SEMICONDUCTOR DEVICES

A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage

Kun Mao, Ming Qiao, Bo Zhang and Zhaoji Li

+ Author Affiliations

 Corresponding author: Mao Kun, Email:maokuncmn@163.com

PDF

Abstract: A dual conduction paths segmented anode lateral insulated-gate bipolar transistor (DSA-LIGBT) which uses triple reduced surface field (RESURF) technology is proposed. Due to the hybrid structures of triple RESURF LDMOS (T-LDMOS) and traditional LIGBT, firstly, a wide p-type anode is beneficial to the small shift voltage (VST) and low specific on-resistance (Ron, sp) when the anode voltage (VA) is larger than VST. Secondly, a wide n-type anode and triple RESURF technology are used to get a low Ron, sp when VA is less than VST. Meanwhile, it can accelerate the extraction of electrons, which brings a low turn-off time (Toff). Experimental results show that:VST is only 0.9 V, Ron, sp (Ron×Area) are 11.7 and 3.6 Ω · mm2 when anode voltage VA equals 0.9 and 3 V, respectively, the breakdown voltage reaches to 800 V and Toff is only 450 ns.

Key words: LIGBTsegmented anodeshift voltagespecific on-resistance800 V



[1]
Matsudai T, Tsukuda M, Umekawa S, et al. New anode design concept of 600 V thin wafer PT-IGBT with very low dose P-buffer and transparent P-emitter. IEEE Proc Circuits Devices Syst, 2004, 151(3):255 doi: 10.1049/ip-cds:20040449
[2]
Gough A P, Simpson M R, Rumenik V. Fast switching lateral insulated gate transistor. IEEE IEDM Tech Dig, 1986:218
[3]
Chen W, Zhang B, Li Z. Area-efficient fast-speed lateral IGBT with a 3-D n-region-controlled anode. IEEE Electron Device Lett, 2010, 31(5):467 doi: 10.1109/LED.2010.2043638
[4]
Sin J K O, Mukherjee S. Analysisand characteriation of the segmented anode LIGBT. IEEE Trans Electron Devices, 1993, 40(7):1300 doi: 10.1109/16.216436
[5]
Kaneko S, Yamagiwa H, Saji T, et al. A 800 V hybrid IGBT having a high-speed internal diode for power-supply applications. Proc 23rd Int Symp Power SemiconductorDevices and IC'S (ISPSD), Jeju, Korea, 2007:17
[6]
Duan Shuangliang, Qiao Ming, Mao Kun, et al. 700 V segmented anode LIGBT with low on-resistance and onset voltage. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:897
[7]
Simpson M R. Analysis of negative differential resistance in the I-V characteristics of shorted-anode LIGBT. IEEE Trans Electron Devices, 1991, 38(7):1633 doi: 10.1109/16.85160
[8]
Jiang Huaping, Chen Wanjun, Liu Chuang, et al. Design and optimization of linearly graded-doping junction termination extension for 3.3-kV-class IGBTs. Journal of Semiconductors, 2011, 32(12):124004 doi: 10.1088/1674-4926/32/12/124004
[9]
Chen Weizhong, Zhang Bo, Li Zehong, et al. A new short-anoded IGBT with high emission efficiency. Journal of Semiconductors, 2012, 33(11):114003 doi: 10.1088/1674-4926/33/11/114003
[10]
Ramakrishna T, Shyam H, David W G, et al. Analysis of lateral IGBT with a variation in lateral doping drift region in junction isolation technology. IEEE Trans Electron Devices, 2006, 53(7):1740 doi: 10.1109/TED.2006.876276
[11]
Shyam H, Tadikonda R, Sweet M, et al. A fast switching segmented anode NPN controlled LIGBT. IEEE Trans Electron Devices, 2003, 24(11):701 doi: 10.1109/LED.2003.819270
[12]
Chen Wensuo, Zhang Bo, Fang Jian, et al. A novel lateral IGBT with a controlled anode for on-off-state losses trade-off improvement. Journal of Semiconductors, 2011, 32(7):074005 doi: 10.1088/1674-4926/32/7/074005
[13]
Hua Qing, Li Zehong, Zhang Bo, et al. Analysis of the dV/dt effect on an IGBT gate circuit in IPM. Journal of Semiconductors, 2013, 34(4):045001 doi: 10.1088/1674-4926/34/4/045001
[14]
Disney D R, Paul A K, Darwish M, et al. A new 800 V lateral MOSFET with dual conduction paths. IEEE ISPSD, 2001:399
Fig. 1.  (a) Three-dimension structure and cross sectional views of proposed DSA-LIGBT along section (b) AA' and (c) BB'.

Fig. 2.  Equivalent circuit diagram along section (a) AA' and (b) CC' in Fig. 1(a). $R_{\rm NWLD}$ is the DNW resistance in LDMOS region.

Fig. 3.  Three-dimension structures of (a) doping concentration and (b) potential distribution at $V_{\rm A}$ equals 3 V of proposed DSA-LIGBT. $W_{\rm N}=W_{\rm P}=$ 100 $\mu $m, $L_{\rm Drift} =$ 70 $\mu $m, $H_{\rm DNW} =$ 8 $\mu $m, $N_{\rm DNW}=$ 1 $\times $ 10$^{15}$ cm$^{-3}$, $N_{\rm Pbury1}=$ 1.5 $\times $ 10$^{16}$ cm$^{-3}$, $N_{\rm Psub}=$ 1 $\times $ 10$^{14}$ cm$^{-3}$. Main models used in simulation: CVT, SRH.

Fig. 4.  $I$$V$ curve of proposed DSA-LIGBT compared with other traditional structures. ``50 : 50'' means DSA-LIGBT with $W_{\rm N}$ equals 50 $\mu $m and $W_{\rm P}$ equals 50 $\mu $m. All structures have the same active areas.

Fig. 5.  Simulated $V_{\rm ST}$ related to $W_{\rm N}$ of different ratios of $W_{\rm N}$ to $W_{\rm P}$. ``1 : 1'' means $W_{\rm N}$ : $W_{\rm P}$ $=$ 1 : 1.

Fig. 6.  Simulated $R_{\rm on, sp}$ related to $W_{\rm N}$ of different ratios of $W_{\rm N}$ to $W_{\rm P}$ at different $V_{\rm A}$. ``1 : 1, 0.1 V'' means $W_{\rm N}$ : $W_{\rm P}$ $=$ 1 : 1 at $V_{\rm A}$ $=$ 0.1 V.

Fig. 7.  Current densities of the proposed DSA-LIGBT shown in Fig. 3 with 100 $\mu $m $W_{\rm N}$ and 100 $\mu $m $W_{\rm P}$. (a) $x$ $=$ 0 $\mu $m, $y =$ 4 $\mu $m, $V_{\rm A} =$ 0.5 V. (b) $x =$ 0 $\mu $m, $y =$ 4 $\mu $m, $V_{\rm A} =$ 1.5 V. (c) $x =$ 0 $\mu $m, $y =$ 4 $\mu $m, $V_{\rm A} =$ 3 V. (d) $x =$ 0 $\mu $m, $y =$ 12 $\mu $m, $V_{\rm A} =$ 0.5 V. (e) $x =$ 0 $\mu $m, $y =$ 12 $\mu $m, $V_{\rm A}$ $=$ 1.5 V. (f) $x =$ 0 $\mu $m, $y =$ 12 $\mu $m, $V_{\rm A} =$ 3 V.

Fig. 8.  Current densities of substrate along the $x$ coordinate axis at $y =$ 12 $\mu $m in Fig. 3.

Fig. 9.  Breakdown voltage related to Pbury implantation dose and energy. `LI1300NB' means LIGBT region along section AA' with Pbury implantation energy of 1300 keV and Nbuffer. `LD1300' means LDMOS region along section BB'.

Fig. 10.  Turn-off current and voltage waveforms of the proposed DSA-LIGBT ($W_{\rm N}$ $=$ 50 $\mu $m, $W_{\rm P}$ $=$ 50 $\mu $m) and TR-LIGBT ($W_{\rm N}$ $=$ 0 $\mu $m, $W_{\rm P}$ $=$ 100 $\mu $m). $T_{\rm off}$ $=$ $T_{\rm 10\% Ion}$$T_{\rm 90\% Ion}$. Test condition: Gate is given a square wave (0–8 V). Drain is connected by a resistance load of 30 k$\Omega $ which connects with a 500 V DC power. Total width of device is 200 $\mu $m.

Fig. 11.  (a) Photomicrograph of the measured DSA-LIGBT. Measured (b) $I$$V$ curve, (c) breakdown curve and (d) turn-off current and voltage waveform of DSA-LIGBT and traditional LIGBT ($V_{\rm DC}$ $=$ 30 V, $V_{\rm gs}$: 0–6 V, $R_{\rm load }$ $=$ 60 $\Omega )$.

Fig. 12.  Measured $R_{\rm on, sp}$ and $V_{\rm ST}$ of proposed DSA-LIGBT with other existing technologies.

[1]
Matsudai T, Tsukuda M, Umekawa S, et al. New anode design concept of 600 V thin wafer PT-IGBT with very low dose P-buffer and transparent P-emitter. IEEE Proc Circuits Devices Syst, 2004, 151(3):255 doi: 10.1049/ip-cds:20040449
[2]
Gough A P, Simpson M R, Rumenik V. Fast switching lateral insulated gate transistor. IEEE IEDM Tech Dig, 1986:218
[3]
Chen W, Zhang B, Li Z. Area-efficient fast-speed lateral IGBT with a 3-D n-region-controlled anode. IEEE Electron Device Lett, 2010, 31(5):467 doi: 10.1109/LED.2010.2043638
[4]
Sin J K O, Mukherjee S. Analysisand characteriation of the segmented anode LIGBT. IEEE Trans Electron Devices, 1993, 40(7):1300 doi: 10.1109/16.216436
[5]
Kaneko S, Yamagiwa H, Saji T, et al. A 800 V hybrid IGBT having a high-speed internal diode for power-supply applications. Proc 23rd Int Symp Power SemiconductorDevices and IC'S (ISPSD), Jeju, Korea, 2007:17
[6]
Duan Shuangliang, Qiao Ming, Mao Kun, et al. 700 V segmented anode LIGBT with low on-resistance and onset voltage. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:897
[7]
Simpson M R. Analysis of negative differential resistance in the I-V characteristics of shorted-anode LIGBT. IEEE Trans Electron Devices, 1991, 38(7):1633 doi: 10.1109/16.85160
[8]
Jiang Huaping, Chen Wanjun, Liu Chuang, et al. Design and optimization of linearly graded-doping junction termination extension for 3.3-kV-class IGBTs. Journal of Semiconductors, 2011, 32(12):124004 doi: 10.1088/1674-4926/32/12/124004
[9]
Chen Weizhong, Zhang Bo, Li Zehong, et al. A new short-anoded IGBT with high emission efficiency. Journal of Semiconductors, 2012, 33(11):114003 doi: 10.1088/1674-4926/33/11/114003
[10]
Ramakrishna T, Shyam H, David W G, et al. Analysis of lateral IGBT with a variation in lateral doping drift region in junction isolation technology. IEEE Trans Electron Devices, 2006, 53(7):1740 doi: 10.1109/TED.2006.876276
[11]
Shyam H, Tadikonda R, Sweet M, et al. A fast switching segmented anode NPN controlled LIGBT. IEEE Trans Electron Devices, 2003, 24(11):701 doi: 10.1109/LED.2003.819270
[12]
Chen Wensuo, Zhang Bo, Fang Jian, et al. A novel lateral IGBT with a controlled anode for on-off-state losses trade-off improvement. Journal of Semiconductors, 2011, 32(7):074005 doi: 10.1088/1674-4926/32/7/074005
[13]
Hua Qing, Li Zehong, Zhang Bo, et al. Analysis of the dV/dt effect on an IGBT gate circuit in IPM. Journal of Semiconductors, 2013, 34(4):045001 doi: 10.1088/1674-4926/34/4/045001
[14]
Disney D R, Paul A K, Darwish M, et al. A new 800 V lateral MOSFET with dual conduction paths. IEEE ISPSD, 2001:399
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2925 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 30 October 2013 Revised: 07 January 2014 Online: Published: 01 May 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kun Mao, Ming Qiao, Bo Zhang, Zhaoji Li. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. Journal of Semiconductors, 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004 K Mao, M Qiao, B Zhang, Z J Li. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. J. Semicond., 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004.Export: BibTex EndNote
      Citation:
      Kun Mao, Ming Qiao, Bo Zhang, Zhaoji Li. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. Journal of Semiconductors, 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004

      K Mao, M Qiao, B Zhang, Z J Li. A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage[J]. J. Semicond., 2014, 35(5): 054004. doi: 10.1088/1674-4926/35/5/054004.
      Export: BibTex EndNote

      A 800 V dual conduction paths segmented anode LIGBT with low specific on-resistance and small shift voltage

      doi: 10.1088/1674-4926/35/5/054004
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61376080)

      the National Natural Science Foundation of China 61376080

      More Information
      • Corresponding author: Mao Kun, Email:maokuncmn@163.com
      • Received Date: 2013-10-30
      • Revised Date: 2014-01-07
      • Published Date: 2014-05-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return