SEMICONDUCTOR DEVICES

Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

Xiaoyu Liang1, Xiaoman Cheng1, 2, , Boqun Du2, Xiao Bai2 and Jianfeng Fan2

+ Author Affiliations

 Corresponding author: Cheng Xiaoman, Email:chengxm@tjut.edu.cn

PDF

Abstract: We investigated the properties of C60-based organic field-effect transistors (OFETs) with a pentacene passivation layer inserted between the C60 active layer and the gate dielectric. After modification of the pentacene passivation layer, the performance of the devices was considerably improved compared to C60-based OFETs with only a PMMA dielectric. The peak field-effect mobility was up to 1.01 cm2/(V·s) and the on/off ratio shifted to 104. This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs.

Key words: organic field-effect transistorspassivation layerC60pentacene



[1]
Tsumura A, Koezuka H, Ando T. Macromolecular electronic device:field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49(18):1210 doi: 10.1063/1.97417
[2]
Zhao G, Cheng X M, Tian H J, et al. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer. Chin Phys Lett, 2011, 28(12):127203 doi: 10.1088/0256-307X/28/12/127203
[3]
Akimichi H, Waragai K, Hotta S, et al. Field-effect transistors using alkyl substituted oligothiophenes. Appl Phys Lett, 1991, 58(14):1500 doi: 10.1063/1.105158
[4]
Minagawa M, Higashikawa T, Nakai K, et al. Fabrication and evaluation of poly (3-hexylthiophene) field-effect transistor with V2O5 layer. Molecular Crystals and Liquid Crystals, 2010, 519(1):213 doi: 10.1080/15421401003597977
[5]
Yadav S, Kumar P, Ghosh S. Optimization of surface morphology to reduce the effect of grain boundaries and contact resistance in small molecule based thin film transistors. Appl Phys Lett, 2012, 101(19):193307 doi: 10.1063/1.4766913
[6]
Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2):99 doi: 10.1002/(ISSN)1521-4095
[7]
Newman C R, Frisbie C D, da Silva Filho D A, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater, 2004, 16(23):4436 doi: 10.1021/cm049391x
[8]
Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature, 2005, 434(7030):194 doi: 10.1038/nature03376
[9]
Zheng Hong, Cheng Xiaoman, Tian Haijun, et al. Enhanced performance of C60 organic field effect transistors using a tris (8-hydroxyquinoline) aluminum buffer layer. Journal of Semiconductors, 2011, 32(9):094005 doi: 10.1088/1674-4926/32/9/094005
[10]
Kao C C, Lin P, Lee C C, et al. High-performance bottom-contact devices based on an air-stable n-type organic semiconductor N, N-bis (4-trifluoromethoxybenzyl)-1, 4, 5, 8-naphthalene-tetracarboxylic di-imide. Appl Phys Lett, 2007, 90:212101 doi: 10.1063/1.2741414
[11]
Wang S, Minari T, Miyadera T, et al. Contact-metal dependent current injection in pentacene thin-film transistors. Appl Phys Lett, 2007, 91(20):203508 doi: 10.1063/1.2813640
[12]
Zhou Jianlin, Niu Qiaoli. Properties of C60 thin film transistor based on polystyrene. Chin Phys B, 2010, 19(7):077305 doi: 10.1088/1674-1056/19/7/077305
[13]
Haddon R, Perel A, Morris R, et al. C60 thin film transistors. Appl Phys Lett, 1995, 67(1):121 doi: 10.1063/1.115503
[14]
Anthopoulos T D, Singh B, Marjanovic N, et al. High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett, 2006, 89(21):213504 doi: 10.1063/1.2387892
[15]
Itaka K, Yamashiro M, Yamaguchi J, et al. High-mobility C60 field-effect transistors fabricated on molecular-wetting controlled substrates. Adv Mater, 2006, 18(13):1713 doi: 10.1002/(ISSN)1521-4095
[16]
Lee H N, Lee Y G, Ko I H, et al. Organic passivation layers for pentacene organic thin-film transistors. Current Appl Phys, 2008, 8(5):626 doi: 10.1016/j.cap.2007.11.003
[17]
Zhou Jianlin, Yu Junsheng, Yu Xinge, et al. A high mobility C60 field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes. Chin Phys B, 2012, 21(2):027305 doi: 10.1088/1674-1056/21/2/027305
Fig. 1.  (a) Schematic diagram of a C$_{60}$-based OFET with a pentacene passivation layer. (b) The molecular structure of pentacene. (c) The molecular structure of C$_{60}$.

Fig. 2.  The (a) output and (b) transfer characteristics of C$_{60}$ OFETs.

Fig. 3.  The (a) output and (b) transfer characteristics of C$_{60}$ OFETs with pentacene passivation layer thicknesses of 2 nm.

Fig. 4.  The field-effect mobility of the device with different thicknesses of pentacene passivation layer.

Fig. 5.  Atomic force microscopy images in 1 $\times$ 1 $\mu$m$^2$ of (a) C$_{60}$ (40 nm)/PMMA and (b) C$_{60}$ (40 nm)/pentacene (2 nm)/PMMA.

Table 1.   Summary of the performance parameters for devices with and without the pentacene passivation layer.

[1]
Tsumura A, Koezuka H, Ando T. Macromolecular electronic device:field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49(18):1210 doi: 10.1063/1.97417
[2]
Zhao G, Cheng X M, Tian H J, et al. Improved performance of pentacene organic field-effect transistors by inserting a V2O5 metal oxide layer. Chin Phys Lett, 2011, 28(12):127203 doi: 10.1088/0256-307X/28/12/127203
[3]
Akimichi H, Waragai K, Hotta S, et al. Field-effect transistors using alkyl substituted oligothiophenes. Appl Phys Lett, 1991, 58(14):1500 doi: 10.1063/1.105158
[4]
Minagawa M, Higashikawa T, Nakai K, et al. Fabrication and evaluation of poly (3-hexylthiophene) field-effect transistor with V2O5 layer. Molecular Crystals and Liquid Crystals, 2010, 519(1):213 doi: 10.1080/15421401003597977
[5]
Yadav S, Kumar P, Ghosh S. Optimization of surface morphology to reduce the effect of grain boundaries and contact resistance in small molecule based thin film transistors. Appl Phys Lett, 2012, 101(19):193307 doi: 10.1063/1.4766913
[6]
Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14(2):99 doi: 10.1002/(ISSN)1521-4095
[7]
Newman C R, Frisbie C D, da Silva Filho D A, et al. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater, 2004, 16(23):4436 doi: 10.1021/cm049391x
[8]
Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature, 2005, 434(7030):194 doi: 10.1038/nature03376
[9]
Zheng Hong, Cheng Xiaoman, Tian Haijun, et al. Enhanced performance of C60 organic field effect transistors using a tris (8-hydroxyquinoline) aluminum buffer layer. Journal of Semiconductors, 2011, 32(9):094005 doi: 10.1088/1674-4926/32/9/094005
[10]
Kao C C, Lin P, Lee C C, et al. High-performance bottom-contact devices based on an air-stable n-type organic semiconductor N, N-bis (4-trifluoromethoxybenzyl)-1, 4, 5, 8-naphthalene-tetracarboxylic di-imide. Appl Phys Lett, 2007, 90:212101 doi: 10.1063/1.2741414
[11]
Wang S, Minari T, Miyadera T, et al. Contact-metal dependent current injection in pentacene thin-film transistors. Appl Phys Lett, 2007, 91(20):203508 doi: 10.1063/1.2813640
[12]
Zhou Jianlin, Niu Qiaoli. Properties of C60 thin film transistor based on polystyrene. Chin Phys B, 2010, 19(7):077305 doi: 10.1088/1674-1056/19/7/077305
[13]
Haddon R, Perel A, Morris R, et al. C60 thin film transistors. Appl Phys Lett, 1995, 67(1):121 doi: 10.1063/1.115503
[14]
Anthopoulos T D, Singh B, Marjanovic N, et al. High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett, 2006, 89(21):213504 doi: 10.1063/1.2387892
[15]
Itaka K, Yamashiro M, Yamaguchi J, et al. High-mobility C60 field-effect transistors fabricated on molecular-wetting controlled substrates. Adv Mater, 2006, 18(13):1713 doi: 10.1002/(ISSN)1521-4095
[16]
Lee H N, Lee Y G, Ko I H, et al. Organic passivation layers for pentacene organic thin-film transistors. Current Appl Phys, 2008, 8(5):626 doi: 10.1016/j.cap.2007.11.003
[17]
Zhou Jianlin, Yu Junsheng, Yu Xinge, et al. A high mobility C60 field-effect transistor with an ultrathin pentacene passivation layer and bathophenanthroline/metal bilayer electrodes. Chin Phys B, 2012, 21(2):027305 doi: 10.1088/1674-1056/21/2/027305
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2184 Times PDF downloads: 7 Times Cited by: 0 Times

    History

    Received: 02 January 2013 Revised: 29 March 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaoyu Liang, Xiaoman Cheng, Boqun Du, Xiao Bai, Jianfeng Fan. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer[J]. Journal of Semiconductors, 2013, 34(8): 084002. doi: 10.1088/1674-4926/34/8/084002 X Y Liang, X M Cheng, B Q Du, X Bai, J F Fan. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer[J]. J. Semicond., 2013, 34(8): 084002. doi: 10.1088/1674-4926/34/8/084002.Export: BibTex EndNote
      Citation:
      Xiaoyu Liang, Xiaoman Cheng, Boqun Du, Xiao Bai, Jianfeng Fan. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer[J]. Journal of Semiconductors, 2013, 34(8): 084002. doi: 10.1088/1674-4926/34/8/084002

      X Y Liang, X M Cheng, B Q Du, X Bai, J F Fan. Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer[J]. J. Semicond., 2013, 34(8): 084002. doi: 10.1088/1674-4926/34/8/084002.
      Export: BibTex EndNote

      Enhanced performance of C60 N-type organic field-effect transistors using a pentacene passivation layer

      doi: 10.1088/1674-4926/34/8/084002
      Funds:

      the National Natural Science Foundation of China 61076065

      the Natural Science Foundation of Tianjin City, China 07JCYBJC12700

      Project supported by the National Natural Science Foundation of China (No. 61076065) and the Natural Science Foundation of Tianjin City, China (No. 07JCYBJC12700)

      More Information
      • Corresponding author: Cheng Xiaoman, Email:chengxm@tjut.edu.cn
      • Received Date: 2013-01-02
      • Revised Date: 2013-03-29
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return