SEMICONDUCTOR PHYSICS

Electronic structures and optical properties of a SiC nanotube with vacancy defects

Jiuxu Song1, 2, , Yintang Yang1, Ping Wang3, Lixin Guo3 and Zhiyong Zhang4

+ Author Affiliations

 Corresponding author: Song Jiuxu, sonx@mail.xidian.edu.cn

PDF

Abstract: Based on first-principle calculations, the electronic structures and optical properties of a single-walled (7, 0) SiC nanotube (SiCNT) with a carbon vacancy defect or a silicon vacancy defect are investigated. In the three silicon atoms around the carbon vacancy, two atoms form a stable bond and the other is a dangling bond. A similar structure is found in the nanotube with a silicon vacancy. A carbon vacancy results in a defect level near the top of the valence band, while a silicon vacancy leads to the formation of three defect levels in the band gap of the nanotube. Transitions between defect levels and energy levels near the bottom of the conduction band have a close relationship with the formation of the novel dielectric peaks in the lower energy range of the dielectric function.

Key words: SiC nanotubevacancy defectfirst-principles studyelectronic structuresoptical properties



[1]
Shin Y S, Wang C M, Samuels W D, et al. Synthesis of SiC nanorods from bleached wood pulp. Mater Lett, 2005, 61(13):2814 https://www.osti.gov/scitech/biblio/909999-synthesis-sic-nanorods-from-bleached-wood-pulp
[2]
Shim H W, Zhang Y F, Huang H C. Twin formation during SiC nanowire synthesis. J Appl Phys, 2008, 104(6):063511 doi: 10.1063/1.2979716
[3]
Jia J M, Ju S P, Shi D N, et al. Electromechanical response of a SiC nanotube under local torsional deformation. J Phys Chem C, 2011, 115(49):24347 doi: 10.1021/jp207857e
[4]
Yang G Z, Cui H, Wang C X. Zn-induced density-controlled growth of β-SiC nanotubes with tunable field emission and hydrophobic properties. Nano, 2011, 6(5):441 doi: 10.1142/S1793292011002767
[5]
Xie Z, Tao D, Wang J. Synthesis of silicon carbide nanotubes by chemical vapor deposition. J Nanosci Nanotechnol, 2007, 7(2):647 doi: 10.1166/jnn.2007.142
[6]
Gali A, Son N T, Janzén E. Electrical characterization of metastable carbon clusters in SiC:a theoretical study. Phys Rev B, 2006, 73(3):033204 doi: 10.1103/PhysRevB.73.033204
[7]
Wagner M, Thinh N Q, Son N T, et al. Ligand hyperfine interaction at the meutral silicon vacancy in 4H-and 6H-SiC. Phys Rev B, 2002, 66(15):155214 doi: 10.1103/PhysRevB.66.155214
[8]
Mizuochi N, Yamasaki S, Takizawa H, et al. Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H-SiC determined by pulsed ENDOR. Phys Rev B, 2005, 72(23):235208 doi: 10.1103/PhysRevB.72.235208
[9]
Zhu Z G, Chutia A, Sahnoun R, et al. Theoretical study on electronic and electrical properties of nanostructural ZnO. Jpn J Appl Phys, 2008, 47(4):2999 doi: 10.1143/JJAP.47.2999
[10]
Lin C S, Zhang R Q, Niehaus T A, et al. Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide:a theoretical study. J Phys Chem C, 2007, 111(11):4069 doi: 10.1021/jp068846y
[11]
Zhang W H, Zhang F C, Zhang Z Y, et al. A first-principles study of the size-dependent electronic properties of SiC nanotubes. Science China:Physics, Mechanics and Astronomy, 2010, 53(7):1333 doi: 10.1007/s11433-010-4029-7
[12]
Liu H X, Zhang H M, Hu H Y. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. Journal of Semiconductors, 2009, 30(5):052002 doi: 10.1088/1674-4926/30/5/052002
[13]
Alam K M, Ray A K. A hybrid density functional study of zigzag SiC nanotubes. Nanotechnology, 2007, 18(49):495706 doi: 10.1088/0957-4484/18/49/495706
[14]
Wang L, Lu J, Luo G F, et al. Optical absorption spectra and polarizabilities of silicon carbide nanotubes. J Phys Chem C, 2007, 111(51):18864 doi: 10.1021/jp074484y
[15]
Guo G Y, Ishibashi S, Tamura T, et al. Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations. Phys Rev B, 2007, 75(24):245403 doi: 10.1103/PhysRevB.75.245403
[16]
Baierle R J, Piquini P, Neves L P, et al. Ab initio study of native defects in SiC nanotubes. Phys Rev B, 2006, 74(15):15542 doi: 10.1103/PhysRevB.74.155425
Fig. 1.  Model of a single-walled (7, 0) SiCNT, gray and black balls indicate silicon and carbon atoms.

Fig. 2.  Electronic structure of an ideal (7, 0) SiCNT.

Fig. 3.  Dielectric functions for an ideal (7, 0) SiCNT.

Fig. 4.  Structure of SiCNT with a vacancy.

Fig. 5.  Electronic structures of a (7, 0) SiCNT with a vacancy.

Fig. 6.  Orbitals for SiCNT with a carbon vacancy or a silicon vacancy.

Fig. 7.  Dielectric functions of a SiCNT with a vacancy.

[1]
Shin Y S, Wang C M, Samuels W D, et al. Synthesis of SiC nanorods from bleached wood pulp. Mater Lett, 2005, 61(13):2814 https://www.osti.gov/scitech/biblio/909999-synthesis-sic-nanorods-from-bleached-wood-pulp
[2]
Shim H W, Zhang Y F, Huang H C. Twin formation during SiC nanowire synthesis. J Appl Phys, 2008, 104(6):063511 doi: 10.1063/1.2979716
[3]
Jia J M, Ju S P, Shi D N, et al. Electromechanical response of a SiC nanotube under local torsional deformation. J Phys Chem C, 2011, 115(49):24347 doi: 10.1021/jp207857e
[4]
Yang G Z, Cui H, Wang C X. Zn-induced density-controlled growth of β-SiC nanotubes with tunable field emission and hydrophobic properties. Nano, 2011, 6(5):441 doi: 10.1142/S1793292011002767
[5]
Xie Z, Tao D, Wang J. Synthesis of silicon carbide nanotubes by chemical vapor deposition. J Nanosci Nanotechnol, 2007, 7(2):647 doi: 10.1166/jnn.2007.142
[6]
Gali A, Son N T, Janzén E. Electrical characterization of metastable carbon clusters in SiC:a theoretical study. Phys Rev B, 2006, 73(3):033204 doi: 10.1103/PhysRevB.73.033204
[7]
Wagner M, Thinh N Q, Son N T, et al. Ligand hyperfine interaction at the meutral silicon vacancy in 4H-and 6H-SiC. Phys Rev B, 2002, 66(15):155214 doi: 10.1103/PhysRevB.66.155214
[8]
Mizuochi N, Yamasaki S, Takizawa H, et al. Spin multiplicity and charge state of a silicon vacancy (TV2a) in 4H-SiC determined by pulsed ENDOR. Phys Rev B, 2005, 72(23):235208 doi: 10.1103/PhysRevB.72.235208
[9]
Zhu Z G, Chutia A, Sahnoun R, et al. Theoretical study on electronic and electrical properties of nanostructural ZnO. Jpn J Appl Phys, 2008, 47(4):2999 doi: 10.1143/JJAP.47.2999
[10]
Lin C S, Zhang R Q, Niehaus T A, et al. Geometric and electronic structures of carbon nanotubes adsorbed with flavin adenine dinucleotide:a theoretical study. J Phys Chem C, 2007, 111(11):4069 doi: 10.1021/jp068846y
[11]
Zhang W H, Zhang F C, Zhang Z Y, et al. A first-principles study of the size-dependent electronic properties of SiC nanotubes. Science China:Physics, Mechanics and Astronomy, 2010, 53(7):1333 doi: 10.1007/s11433-010-4029-7
[12]
Liu H X, Zhang H M, Hu H Y. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. Journal of Semiconductors, 2009, 30(5):052002 doi: 10.1088/1674-4926/30/5/052002
[13]
Alam K M, Ray A K. A hybrid density functional study of zigzag SiC nanotubes. Nanotechnology, 2007, 18(49):495706 doi: 10.1088/0957-4484/18/49/495706
[14]
Wang L, Lu J, Luo G F, et al. Optical absorption spectra and polarizabilities of silicon carbide nanotubes. J Phys Chem C, 2007, 111(51):18864 doi: 10.1021/jp074484y
[15]
Guo G Y, Ishibashi S, Tamura T, et al. Static dielectric response and Born effective charge of BN nanotubes from ab initio finite electric field calculations. Phys Rev B, 2007, 75(24):245403 doi: 10.1103/PhysRevB.75.245403
[16]
Baierle R J, Piquini P, Neves L P, et al. Ab initio study of native defects in SiC nanotubes. Phys Rev B, 2006, 74(15):15542 doi: 10.1103/PhysRevB.74.155425
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2293 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 19 July 2012 Revised: 28 August 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. Journal of Semiconductors, 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001 J X Song, Y T Yang, P Wang, L X Guo, Z Y Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001.Export: BibTex EndNote
      Citation:
      Jiuxu Song, Yintang Yang, Ping Wang, Lixin Guo, Zhiyong Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. Journal of Semiconductors, 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001

      J X Song, Y T Yang, P Wang, L X Guo, Z Y Zhang. Electronic structures and optical properties of a SiC nanotube with vacancy defects[J]. J. Semicond., 2013, 34(2): 022001. doi: 10.1088/1674-4926/34/2/022001.
      Export: BibTex EndNote

      Electronic structures and optical properties of a SiC nanotube with vacancy defects

      doi: 10.1088/1674-4926/34/2/022001
      Funds:

      Project supported by the China Postdoctoral Science Foundation (No. 201104619) and the Fund of Shaanxi Provincial Educational Department (No. 2010JK775)

      the China Postdoctoral Science Foundation 201104619

      the Fund of Shaanxi Provincial Educational Department 2010JK775

      More Information
      • Corresponding author: Song Jiuxu, sonx@mail.xidian.edu.cn
      • Received Date: 2012-07-19
      • Revised Date: 2012-08-28
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return