REVIEWS

Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications

Weiqin Wei, Shuxin Ouyang and Tierui Zhang

+ Author Affiliations

 Corresponding author: Shuxin Ouyang, Email: oysx@mail.ccnu.edu.cn

PDF

Turn off MathJax

Abstract: As an emerging organic semiconductor, perylene diimide (PDI) self-assembly has attracted tremendous attention in the aspects of solar cells, sensors, fluorescence probes and n-transistors, etc. In term of photocatalysis, various photocatalysts based on PDI self-assembly exhibit some unique properties, such as intrinsic Π-Π stacking structure, fast internal charge transfer, band-like electronic structure, flexible structural modifiability, well-defined morphological adjustability and excellent light absorption. This paper mainly presents recent progress on PDI self-assembly regarding how to regulate the electronic structure of PDI self-assembly. In addition, the photocatalytic applications of PDI self-assembly and its complexes were reviewed, such as environmental remedy, energy productions, organic synthesis and photodynamic/photothermal therapy, further highlighting related photocatalytic mechanisms. Finally, the review contents and some perspectives on photocatalytic research of PDI self-assembly were summarized, and some key scientific problems were put forward to direct related photocatalytic research in future.

Key words: perylene diimideself-assemblyphotocatalysisΠ-Π stackingelectron transfer



[1]
Bard A J. Photoelectrochemistry. Science, 1980, 207, 139 doi: 10.1126/science.207.4427.139
[2]
Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95, 69 doi: 10.1021/cr00033a004
[3]
Quay P D, Tilbrook B, Wong C S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science, 1992, 256, 74 doi: 10.1126/science.256.5053.74
[4]
Gustafsson O, Krusa M, Zencak Z, et al. Brown clouds over south asia: biomass or fossil fuel combustion. Science, 2009, 323, 495 doi: 10.1126/science.1164857
[5]
Wigley T M L. Could reducing fossil-fuel emissions cause global warming. Nature, 1991, 349, 503 doi: 10.1038/349503a0
[6]
Tong H, Ouyang S, Bi Y P, et al. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater, 2012, 24, 229 doi: 10.1002/adma.201102752
[7]
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38, 253 doi: 10.1039/B800489G
[8]
Wei W Q, Liu D, Wei Z, et al. Short-range π–π stacking assembly on P25 TiO2 nanoparticles for enhanced visible-light photocatalysis. ACS Catal, 2017, 7, 652 doi: 10.1021/acscatal.6b03064
[9]
Wei W Q, Wei Z, Liu D, et al. Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Appl Catal B, 2018, 230, 49 doi: 10.1016/j.apcatb.2018.02.032
[10]
Wei W Q, Zhu Y F. TiO2@perylene diimide full-spectrum photocatalysts via semi-core–shell structure. Small, 2019, 15, 1903933 doi: 10.1002/smll.201903933
[11]
Hu W, Lin L, Zhang R Q, et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J Am Chem Soc, 2017, 139, 15429 doi: 10.1021/jacs.7b08474
[12]
Fujito H, Kunioku H, Kato D, et al. Layered perovskite oxychloride Bi4NbO8Cl: A stable visible light responsive photocatalyst for water splitting. ChemInform, 2016, 138, 2082 doi: 10.1002/chin.201626012
[13]
Wei Z, Liu M L, Zhang Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci, 2018, 11, 2581 doi: 10.1039/C8EE01316K
[14]
Zeng G T, Qiu J, Li Z, et al. CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal, 2014, 4, 3512 doi: 10.1021/cs500697w
[15]
Li X, Yu J G, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119, 3962 doi: 10.1021/acs.chemrev.8b00400
[16]
Zeng L, Liu T, He C, et al. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via consecutive visible light-induced electron-transfer processes. J Am Chem Soc, 2016, 138, 3958 doi: 10.1021/jacs.5b12931
[17]
Ghosh I, Ghosh T, Bardagi J I, et al. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 2014, 346, 725 doi: 10.1126/science.1258232
[18]
Robertson P K J, Robertson J M C, Bahnemann D W. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater, 2012, 211/212, 161 doi: 10.1016/j.jhazmat.2011.11.058
[19]
Wang J, Liu D, Zhu Y F, et al. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl Catal B, 2018, 231, 251 doi: 10.1016/j.apcatb.2018.03.026
[20]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[21]
Chai Z G, Zeng T T, Li Q, et al. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J Am Chem Soc, 2016, 138, 10128 doi: 10.1021/jacs.6b06860
[22]
Hu J Q, Liu A L, Jin H L, et al. A versatile strategy for shish-kebab-like multi-heterostructured chalcogenides and enhanced photocatalytic hydrogen evolution. J Am Chem Soc, 2015, 137, 11004 doi: 10.1021/jacs.5b04784
[23]
Song H, Meng X G, Wang S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J Am Chem Soc, 2019, 141, 20507 doi: 10.1021/jacs.9b11440
[24]
He W W, Kim H K, Wamer W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc, 2014, 136, 750 doi: 10.1021/ja410800y
[25]
Zhang K, Liu J L, Wang L Y, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc, 2020, 142, 8641 doi: 10.1021/jacs.9b13410
[26]
Yu Y Y, Ma K, Zhuang R, et al. Hydroxyl-mediated formation of highly dispersed SnO2/TiO2 heterojunction via pulsed chemical vapor deposition to enhance photocatalytic activity. Ind Eng Chem Res, 2019, 58, 14655 doi: 10.1021/acs.iecr.9b02360
[27]
Wang Y Y, Jiang W J, Luo W J, et al. Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Appl Catal B, 2018, 237, 633 doi: 10.1016/j.apcatb.2018.06.013
[28]
Yang J J, Chen D M, Zhu Y, et al. 3D–3D porous Bi2WO6/ graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl Catal B, 2017, 205, 228 doi: 10.1016/j.apcatb.2016.12.035
[29]
Iwase A, Yoshino S, Takayama T, et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoO x-loaded BiVO4, and a reduced graphene oxide electron mediator. J Am Chem Soc, 2016, 138, 10260 doi: 10.1021/jacs.6b05304
[30]
Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[31]
Weng B, Qi M Y, Han C, et al. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal, 2019, 9, 4642 doi: 10.1021/acscatal.9b00313
[32]
Ghosh S, Kouame N A, Ramos L, et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater, 2015, 14, 505 doi: 10.1038/nmat4220
[33]
Yang F X, Cheng S S, Zhang X T, et al. 2D organic materials for optoelectronic applications. Adv Mater, 2018, 30, 1702415 doi: 10.1002/adma.201702415
[34]
Cao S W, Low J, Yu J G, et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 2015, 27, 2150 doi: 10.1002/adma.201500033
[35]
Zhao N N, Yan L M, Zhao X Y, et al. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem Rev, 2019, 119, 1666 doi: 10.1021/acs.chemrev.8b00401
[36]
Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis. Anal Chem, 2017, 89, 358 doi: 10.1021/acs.analchem.6b04675
[37]
Choudhuri I, Bhauriyal P, Pathak B. Recent advances in graphene-like 2D materials for spintronics applications. Chem Mater, 2019, 31, 8260 doi: 10.1021/acs.chemmater.9b02243
[38]
Niu W H, Yang Y. Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett, 2018, 3, 2796 doi: 10.1021/acsenergylett.8b01594
[39]
Meng Z, Stolz R M, Mendecki L, et al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev, 2019, 119, 478 doi: 10.1021/acs.chemrev.8b00311
[40]
Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem Rev, 2016, 116, 7159 doi: 10.1021/acs.chemrev.6b00075
[41]
Wang Z H, Hu X, Liu Z Z, et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal, 2019, 9, 10260 doi: 10.1021/acscatal.9b03015
[42]
Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8, 76 doi: 10.1038/nmat2317
[43]
Takeda H, Kamiyama H, Okamoto K, et al. Highly efficient and robust photocatalytic systems for CO2 reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. J Am Chem Soc, 2018, 140, 17241 doi: 10.1021/jacs.8b10619
[44]
Higgins R F, Fatur S M, Shepard S G, et al. Uncovering the roles of oxygen in Cr(III) photoredox catalysis. J Am Chem Soc, 2016, 138, 5451 doi: 10.1021/jacs.6b02723
[45]
Hong D C, Kawanishi T, Tsukakoshi Y, et al. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a lewis-acid cocatalyst. J Am Chem Soc, 2019, 141, 20309 doi: 10.1021/jacs.9b10597
[46]
Zhang D, Wu L Z, Zhou L, et al. Photocatalytic hydrogen production from hantzsch 1, 4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc, 2004, 126, 3440 doi: 10.1021/ja037631o
[47]
Fernández S, Franco F, Casadevall C, et al. A unified electro- and photocatalytic CO2 to CO reduction mechanism with aminopyridine cobalt complexes. J Am Chem Soc, 2020, 142, 120 doi: 10.1021/jacs.9b06633
[48]
Xu B, Troian-Gautier L, Dykstra R, et al. Photocatalyzed diastereoselective isomerization of cinnamyl chlorides to cyclopropanes. J Am Chem Soc, 2020, 142, 6206 doi: 10.1021/jacs.0c00147
[49]
Elvington M, Brown J, Arachchige S M, et al. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc, 2007, 129, 10644 doi: 10.1021/ja073123t
[50]
Cheung P L, Kapper S C, Zeng T, et al. Improving photocatalysis for the reduction of CO2 through non-covalent supramolecular assembly. J Am Chem Soc, 2019, 141, 14961 doi: 10.1021/jacs.9b07067
[51]
Rabe E J, Corp K L, Sobolewski A L, et al. Proton-coupled electron transfer from water to a model heptazine-based molecular photocatalyst. J Phys Chem Lett, 2018, 9, 6257 doi: 10.1021/acs.jpclett.8b02519
[52]
Wang C, Xie Z G, de Krafft K E, et al. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc, 2011, 133, 13445 doi: 10.1021/ja203564w
[53]
Yang X J, Liang T, Sun J X, et al. Template-directed synthesis of photocatalyst-encapsulating metal-organic frameworks with boosted photocatalytic activity. ACS Catal, 2019, 9, 7486 doi: 10.1021/acscatal.9b01783
[54]
Chambers M B, Wang X, Ellezam L, et al. Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: Substoichiometric effects in MIL-125-NH2. J Am Chem Soc, 2017, 139, 8222 doi: 10.1021/jacs.7b02186
[55]
Wei P F, Qi M Z, Wang Z P, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J Am Chem Soc, 2018, 140, 4623 doi: 10.1021/jacs.8b00571
[56]
Wan Y, Wang L, Xu H, et al. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J Am Chem Soc, 2020, 149(9), 4508 doi: 10.1021/jacs.0c00564
[57]
Luo Q Z, Bao L L, Wang D S, et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene. J Phys Chem C, 2012, 116, 25806 doi: 10.1021/jp308150j
[58]
Floresyona D, Goubard F, Aubert P H, et al. Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light. Appl Catal B, 2017, 209, 23 doi: 10.1016/j.apcatb.2017.02.069
[59]
Zhang M, Rouch W D, McCulla R D. Conjugated polymers as photoredox catalysts: Visible-light-driven reduction of aryl aldehydes by poly(p-phenylene). Eur J Org Chem, 2012, 2012, 6187 doi: 10.1002/ejoc.201200437
[60]
Muktha B, Madras G, Guru Row T N, et al. Conjugated polymers for photocatalysis. J Phys Chem B, 2007, 111, 7994 doi: 10.1021/jp071096n
[61]
Ghosh S, Mallik A K, Basu R N. Enhanced photocatalytic activity and photoresponse of poly(3, 4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Sol Energy, 2018, 159, 548 doi: 10.1016/j.solener.2017.11.036
[62]
Li L W, Cai Z X, Wu Q H, et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc, 2016, 138, 7681 doi: 10.1021/jacs.6b03472
[63]
Zhang Z J, Zhu Y F, Chen X J, et al. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater, 2019, 31, 1806626 doi: 10.1002/adma.201806626
[64]
Liu D, Wang J, Bai X J, et al. Self-assembled PDINH supramolecular system for photocatalysis under visible light. Adv Mater, 2016, 28, 7284 doi: 10.1002/adma.201601168
[65]
Wei Z, Hu J S, Zhu K J, et al. Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Appl Catal B, 2018, 226, 616 doi: 10.1016/j.apcatb.2017.12.070
[66]
Würthner F, Saha-Möller C R, Fimmel B, et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev, 2016, 116, 962 doi: 10.1021/acs.chemrev.5b00188
[67]
Zollinger H. Color chemistry. 3rd ed. Wiley-VCH: Weinheim, 2003
[68]
Wuerthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. ChemInform, 2004, 35, 1564 doi: 10.1002/chin.200430145
[69]
Saito G, Yoshida Y. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. ChemInform, 2007, 38, 1 doi: 10.1002/chin.200714259
[70]
Weingarten A S, Kazantsev R V, Palmer L C, et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat Chem, 2014, 6, 964 doi: 10.1038/nchem.2075
[71]
Ke D M, Zhan C L, Xu S P, et al. Self-assembled hollow nanospheres strongly enhance photoluminescence. J Am Chem Soc, 2011, 133, 11022 doi: 10.1021/ja202179t
[72]
Balakrishnan K, Datar A, Naddo T, et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules: Morphology control. J Am Chem Soc, 2006, 128, 7390 doi: 10.1021/ja061810z
[73]
Bai S, Debnath S, Javid N, et al. Differential self-assembly and tunable emission of aromatic peptide bola-amphiphiles containing perylene bisimide in polar solvents including water. Langmuir, 2014, 30, 7576 doi: 10.1021/la501335e
[74]
Wang J, Shi W, Liu D, et al. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl Catal B, 2017, 202, 289 doi: 10.1016/j.apcatb.2016.09.037
[75]
Balakrishnan K, Datar A, Oitker R, et al. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J Am Chem Soc, 2005, 127, 10496 doi: 10.1021/ja052940v
[76]
Jonkheijm P, van der Schoot P, Schenning A P H J, et al. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science, 2006, 313, 80 doi: 10.1126/science.1127884
[77]
Gong Q Y, Xing J, Huang Y J, et al. Perylene diimide oligomer nanoparticles with ultrahigh photothermal conversion efficiency for cancer theranostics. ACS Appl Bio Mater, 2020, 3, 1607 doi: 10.1021/acsabm.9b01187
[78]
Zang L. Interfacial donor–acceptor engineering of nanofiber materials to achieve photoconductivity and applications. Acc Chem Res, 2015, 48, 2705 doi: 10.1021/acs.accounts.5b00176
[79]
Che Y K, Datar A, Yang X M, et al. Enhancing one-dimensional charge transport through intermolecular π-electron delocalization: Conductivity improvement for organic nanobelts. J Am Chem Soc, 2007, 129, 6354 doi: 10.1021/ja070164g
[80]
Zang L, Che Y K, Moore J S. One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices. Acc Chem Res, 2008, 41, 1596 doi: 10.1021/ar800030w
[81]
Miao H, Yang J, Peng G L, et al. Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Sci Bull, 2019, 64, 896 doi: 10.1016/j.scib.2019.05.006
[82]
Yang J, Miao H, Wei Y X, et al. Π-Π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Appl Catal B, 2019, 240, 225 doi: 10.1016/j.apcatb.2018.09.003
[83]
Yang J, Miao H, Li W L, et al. Designed synthesis of a p-Ag2S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. J Mater Chem A, 2019, 7, 6482 doi: 10.1039/C9TA00580C
[84]
Miao H, Yang J, Wei Y X, et al. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B, 2018, 239, 61 doi: 10.1016/j.apcatb.2018.08.009
[85]
Wei Y X, Ma M G, Li W L, et al. Enhanced photocatalytic activity of PTCDI-C60 via π-π interaction. Appl Catal B, 2018, 238, 302 doi: 10.1016/j.apcatb.2018.07.043
[86]
Zhang Z J, Wang J, Liu D, et al. Highly efficient organic photocatalyst with full visible light spectrum through π–π stacking of TCNQ–PTCDI. ACS Appl Mater Interfaces, 2016, 8, 30225 doi: 10.1021/acsami.6b10186
[87]
Chen S, Wang C, Bunes B R, et al. Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. Appl Catal A, 2015, 498, 63 doi: 10.1016/j.apcata.2015.03.026
[88]
Chen S, Jacobs D L, Xu J K, et al. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv, 2014, 4, 48486 doi: 10.1039/C4RA09258A
[89]
Yang Z, Fan W P, Zou J H, et al. Precision cancer theranostic platform by in situ polymerization in perylene diimide-hybridized hollow mesoporous organosilica nanoparticles. J Am Chem Soc, 2019, 141, 14687 doi: 10.1021/jacs.9b06086
[90]
Stergiou A, Tagmatarchis N. Fluorene–perylene diimide arrays onto graphene sheets for photocatalysis. ACS Appl Mater Interfaces, 2016, 8, 21576 doi: 10.1021/acsami.6b06797
[91]
Chen S, Slattum P, Wang C Y, et al. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem Rev, 2015, 115, 11967 doi: 10.1021/acs.chemrev.5b00312
[92]
Huang C, Barlow S, Marder S R. Perylene-3, 4, 9, 10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J Org Chem, 2011, 76, 2386 doi: 10.1021/jo2001963
[93]
Peng H Q, Niu L Y, Chen Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem Rev, 2015, 115, 7502 doi: 10.1021/cr5007057
[94]
Teo Y N, Kool E T. DNA-multichromophore systems. Chem Rev, 2012, 112, 4221 doi: 10.1021/cr100351g
[95]
Chen Z J, Debije M G, Debaerdemaeker T, et al. Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: Studies on structural, electrochemical and charge transport properties. ChemPhysChem, 2004, 5, 137 doi: 10.1002/cphc.200300882
[96]
Würthner F, Sautter A, Schilling J. Synthesis of diazadibenzoperylenes and characterization of their structural, optical, redox, and coordination properties. J Org Chem, 2002, 67, 3037 doi: 10.1021/jo011133l
[97]
Yan P, Chowdhury A, Holman M W, et al. Self-organized perylene diimide nanofibers. J Phys Chem B, 2005, 109, 724 doi: 10.1021/jp046133e
[98]
Che Y K, Datar A, Balakrishnan K, et al. Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J Am Chem Soc, 2007, 129, 7234 doi: 10.1021/ja071903w
[99]
Che Y K, Huang H L, Xu M, et al. Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials. J Am Chem Soc, 2011, 133, 1087 doi: 10.1021/ja109396g
[100]
Graser F, Hädicke E. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten. Liebigs Ann Chem, 1980, 1980, 1994 doi: 10.1002/jlac.198019801210
[101]
Graser F, Hädike E. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten, 2. Liebigs Ann Chem, 1984, 1984, 483 doi: 10.1002/jlac.198419840308
[102]
Struijk C W, Sieval A B, Dakhorst J E J, et al. Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J Am Chem Soc, 2000, 122, 11057 doi: 10.1021/ja000991g
[103]
Datar A, Balakrishnan K, Yang X M, et al. Linearly polarized emission of an organic semiconductor nanobelt. J Phys Chem B, 2006, 110, 12327 doi: 10.1021/jp061739j
[104]
Yamagata H, Maxwell D S, Fan J, et al. HJ-aggregate behavior of crystalline 7, 8, 15, 16-tetraazaterrylene: Introducing a new design paradigm for organic materials. J Phys Chem C, 2014, 118, 28842 doi: 10.1021/jp509011u
[105]
Chen Y C, Lam J W Y, Kwok R T K, et al. Aggregation-induced emission: Fundamental understanding and future developments. Mater Horiz, 2019, 6, 428 doi: 10.1039/C8MH01331D
[106]
Che Y K, Yang X M, Liu G L, et al. Ultrathin n-type organic nanoribbons with high photoconductivity and application in optoelectronic vapor sensing of explosives. J Am Chem Soc, 2010, 132, 5743 doi: 10.1021/ja909797q
[107]
Rodler F, Schade B, Jäger C M, et al. Amphiphilic perylene–calix. J Am Chem Soc, 2015, 137, 3308 doi: 10.1021/ja512048t
[108]
Wang J L, Yu Y, Zhang L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B, 2013, 136/137, 112 doi: 10.1016/j.apcatb.2013.02.009
[109]
Liang Y M, Lan S Q, Deng P, et al. Regioregular and regioirregular poly(selenophene-perylene diimide) acceptors for polymer–polymer solar cells. ACS Appl Mater Interfaces, 2018, 10, 32397 doi: 10.1021/acsami.8b09061
[110]
Li X, Wang H, Nakayama H, et al. Multi-sulfur-annulated fused perylene diimides for organic solar cells with low open-circuit voltage loss. ACS Appl Energy Mater, 2019, 2, 3805 doi: 10.1021/acsaem.9b00492
[111]
Samanta S K, Song I, Yoo J H, et al. Organic n-channel transistors based on. ACS Appl Mater Interfaces, 2018, 10, 32444 doi: 10.1021/acsami.8b10831
[112]
Yang J, Yin Y, Chen F, et al. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl Mater Interfaces, 2018, 10, 23263 doi: 10.1021/acsami.8b06306
[113]
Woodhouse M, Perkins C L, Rawls M T, et al. Non-conjugated polymers for organic photovoltaics: Physical and optoelectronic properties of poly(perylene diimides). J Phys Chem C, 2010, 114, 6784 doi: 10.1021/jp910738a
[114]
Zhang J, Li Y, Huang J, et al. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J Am Chem Soc, 2017, 139, 16092 doi: 10.1021/jacs.7b09998
[115]
An T C, An J B, Gao Y P, et al. Photocatalytic degradation and mineralization mechanism and toxicity assessment of antivirus drug acyclovir: Experimental and theoretical studies. Appl Catal B, 2015, 164, 279 doi: 10.1016/j.apcatb.2014.09.009
[116]
Iwase M, Yamada K, Kurisaki T, et al. Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound. Appl Catal B, 2013, 132/133, 39 doi: 10.1016/j.apcatb.2012.11.014
[117]
Kitano S, Hashimoto K, Kominami H. Photocatalytic degradation of 2-propanol over metal-ion-loaded titanium(IV) oxide under visible light irradiation: Effect of physical properties of nano-crystalline titanium(IV) oxide. Appl Catal B, 2011, 101, 206 doi: 10.1016/j.apcatb.2010.09.021
[118]
Li Q, Shang J K. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environ Sci Technol, 2010, 44, 3493 doi: 10.1021/es903928n
[119]
Shi Q, Murcia-López S, Tang P Y, et al. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal, 2018, 8, 3331 doi: 10.1021/acscatal.7b04277
[120]
An L J, Onishi H. Electron–hole recombination controlled by metal doping sites in NaTaO3 photocatalysts. ACS Catal, 2015, 5, 3196 doi: 10.1021/acscatal.5b00484
[121]
Liu X, Gao S, Xu H, et al. Stable blue TiO2– x nanoparticles for efficient visible light photocatalysts. Nanoscale, 2013, 5, 1870 doi: 10.1039/c2nr33563h
[122]
Zhu Q, Peng Y, Lin L, et al. Green synthetic approach for Ti3+ self-doped TiO2– x nanoparticles with efficient visible light photocatalytic activity. J Mater Chem A, 2014, 2, 4429 doi: 10.1039/C3TA14484D
[123]
Huang H W, Zhou C, Jiao X C, et al. Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. ACS Catal, 2020, 10, 1439 doi: 10.1021/acscatal.9b04789
[124]
Jiang D, Wang W Z, Zhang L, et al. Insights into the surface-defect dependence of photoreactivity over CeO2 nanocrystals with well-defined crystal facets. ACS Catal, 2015, 5, 4851 doi: 10.1021/acscatal.5b01128
[125]
Cushing S K, Meng F K, Zhang J Y, et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal, 2017, 7, 1742 doi: 10.1021/acscatal.6b02177
[126]
Seybold G, Wagenblast G. New perylene and violanthrone dyestuffs for fluorescent collectors. Dye Pigment, 1989, 11, 303 doi: 10.1016/0143-7208(89)85048-X
[127]
Sadrai M, Hadel L, Sauers R R, et al. Lasing action in a family of perylene derivatives: Singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations. J Phys Chem, 1992, 96, 7988 doi: 10.1021/j100199a032
[128]
Ahrens M J, Fuller M J, Wasielewski M R. Cyanated perylene-3, 4-dicarboximides and perylene-3, 4: 9, 10-bis(dicarboximide): Facile chromophoric oxidants for organic photonics and electronics. Chem Mater, 2003, 15, 2684 doi: 10.1021/cm034140u
[129]
Zhao Y Y, Wasielewski M R. 3, 4: 9, 10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors. Tetrahedron Lett, 1999, 40, 7047 doi: 10.1016/S0040-4039(99)01468-9
[130]
Lukas A S, Zhao Y Y, Miller S E, et al. Biomimetic electron transfer using low energy excited states: A green perylene-based analogue of chlorophylla. J Phys Chem B, 2002, 106, 1299 doi: 10.1021/jp014073w
[131]
Yoshida J I, Kataoka K, Horcajada R, et al. Modern strategies in electroorganic synthesis. Chem Rev, 2008, 108, 2265 doi: 10.1021/cr0680843
[132]
Kingston C, Palkowitz M D, Takahira Y, et al. A survival guide for the "electro-curious". Acc Chem Res, 2020, 53, 72 doi: 10.1021/acs.accounts.9b00539
[133]
Ruffoni A, Juliá F, Svejstrup T D, et al. Practical and regioselective amination of arenes using alkyl amines. Nat Chem, 2019, 11, 426 doi: 10.1038/s41557-019-0254-5
[134]
Bariwal J, van der Eycken E. C–N bond forming cross-coupling reactions: An overview. Chem Soc Rev, 2013, 42, 9283 doi: 10.1039/c3cs60228a
[135]
Moeller K D. Synthetic applications of anodic electrochemistry. Tetrahedron, 2000, 56, 9527 doi: 10.1016/S0040-4020(00)00840-1
[136]
Yang Q L, Wang X Y, Lu J Y, et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J Am Chem Soc, 2018, 140, 11487 doi: 10.1021/jacs.8b07380
[137]
Morofuji T, Shimizu A, Yoshida J I. Electrochemical C–H amination: Synthesis of aromatic primary amines viaN-arylpyridinium ions. J Am Chem Soc, 2013, 135, 5000 doi: 10.1021/ja402083e
[138]
Ham W S, Hillenbrand J, Jacq J, et al. Divergent late-stage (hetero)aryl C–H amination by the pyridinium radical cation. Angew Chem Int Ed, 2019, 58, 532 doi: 10.1002/anie.201810262
[139]
Hayashi R, Shimizu A, Yoshida J I. The stabilized cation pool method: Metal- and oxidant-free benzylic C–H/aromatic C–H cross-coupling. J Am Chem Soc, 2016, 138, 8400 doi: 10.1021/jacs.6b05273
[140]
Hou Z W, Mao Z Y, Melcamu Y Y, et al. Back cover: Electrochemical synthesis of imidazo-fused N-heteroaromatic compounds through a C–N bond-forming radical. Angew Chem Int Ed, 2018, 57, 1722 doi: 10.1002/anie.201800266
[141]
Hou Z W, Mao Z Y, Zhao H B, et al. Frontispiece: electrochemical C–H/N–H functionalization for the synthesis of highly functionalized (aza)indoles. Angew Chem Int Ed, 2016, 55, 9168 doi: 10.1002/anie.201683261
[142]
Waldvogel S R, Selt M. Electrochemical allylic oxidation of olefins: Sustainable and safe. Angew Chem Int Ed, 2016, 55, 12578 doi: 10.1002/anie.201606727
[143]
Jiang Y Y, Xu K, Zeng C C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev, 2018, 118, 4485 doi: 10.1021/acs.chemrev.7b00271
[144]
Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem Rev, 2017, 117, 13230 doi: 10.1021/acs.chemrev.7b00397
[145]
Jutand A. Contribution of electrochemistry to organometallic catalysis. Chem Rev, 2008, 108, 2300 doi: 10.1021/cr068072h
[146]
Feng R Z, Smith J A, Moeller K D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc Chem Res, 2017, 50, 2346 doi: 10.1021/acs.accounts.7b00287
[147]
Krieg E, Weissman H, Shimoni E, et al. Understanding the effect of fluorocarbons in aqueous supramolecular polymerization: Ultrastrong noncovalent binding and cooperativity. J Am Chem Soc, 2014, 136, 9443 doi: 10.1021/ja503906p
[148]
Zhao Q L, Zhang S, Liu Y, et al. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J Mater Chem, 2012, 22, 7387 doi: 10.1039/c2jm16613e
[149]
Hendsbee A D, Sun J P, Law W K, et al. Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem Mater, 2016, 28, 7098 doi: 10.1021/acs.chemmater.6b03292
[150]
Li G, Zhao Y B, Li J B, et al. Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. J Org Chem, 2015, 80, 196 doi: 10.1021/jo502296z
[151]
Seifert S, Schmidt D, Würthner F. An ambient stable core-substituted perylene bisimide dianion: Isolation and single crystal structure analysis. Chem Sci, 2015, 6, 1663 doi: 10.1039/C4SC03671A
[152]
Schuster N J, Joyce L A, Paley D W, et al. The structural origins of intense circular dichroism in a waggling helicene nanoribbon. J Am Chem Soc, 2020, 142, 7066 doi: 10.1021/jacs.0c00646
[153]
Lee S K, Zu Y B, Herrmann A, et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J Am Chem Soc, 1999, 121, 3513 doi: 10.1021/ja984188m
[154]
Zhang A D, Jiang W, Wang Z H. Fulvalene-embedded perylene diimide and its stable radical anion. Angew Chem, 2020, 132, 762 doi: 10.1002/ange.201912536
[155]
Jones B A, Facchetti A, Wasielewski M R, et al. Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. J Am Chem Soc, 2007, 129, 15259 doi: 10.1021/ja075242e
[156]
Peurifoy S R, Castro E, Liu F, et al. Three-dimensional graphene nanostructures. J Am Chem Soc, 2018, 140, 9341 doi: 10.1021/jacs.8b04119
[157]
Gao G P, Liang N N, Geng H, et al. Spiro-fused perylene diimide arrays. J Am Chem Soc, 2017, 139, 15914 doi: 10.1021/jacs.7b09140
[158]
Liu B, Böckmann M, Jiang W, et al. Perylene diimide-embedded double. J Am Chem Soc, 2020, 142, 7092 doi: 10.1021/jacs.0c00954
[159]
Langhals H. Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry. Heterocycles, 1995, 1, 477 doi: 10.3987/REV-94-SR2
[160]
Wang W, Wang L Q, Palmer B J, et al. Cyclization and catenation directed by molecular self-assembly. J Am Chem Soc, 2006, 128, 11150 doi: 10.1021/ja061826p
[161]
Barendt T A, Ferreira L, Marques I, et al. Anion- and solvent-induced rotary dynamics and sensing in a perylene diimide. J Am Chem Soc, 2017, 139, 9026 doi: 10.1021/jacs.7b04295
[162]
Pochas C M, Kistler K A, Yamagata H, et al. Contrasting photophysical properties of star-shaped vs linear perylene diimide complexes. J Am Chem Soc, 2013, 135, 3056 doi: 10.1021/ja3087449
[163]
Wang J, Yang Z, Gao X X, et al. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B, 2017, 217, 169 doi: 10.1016/j.apcatb.2017.05.034
[164]
You C C, Würthner F. Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(II) corner to electrochemically active molecular squares. J Am Chem Soc, 2003, 125, 9716 doi: 10.1021/ja029648x
[165]
Delgado M C R, Kim E G, Filho D A D S, et al. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. J Am Chem Soc, 2010, 132, 3375 doi: 10.1021/ja908173x
[166]
Kim Y J, Lee Y, Park K, et al. Hierarchical self-assembly of perylene diimide (PDI) crystals. J Phys Chem Lett, 2020, 11, 3934 doi: 10.1021/acs.jpclett.0c01226
[167]
Zhou E J, Cong J Z, Wei Q S, et al. Berichtigung: all-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control. Angew Chem, 2011, 123, 8120 doi: 10.1002/ange.201104815
[168]
Luo Z H, Wu F, Zhang T, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability. Angew Chem Int Ed, 2019, 58, 8520 doi: 10.1002/anie.201904195
[169]
Dössel L F, Kamm V, Howard I A, et al. Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. J Am Chem Soc, 2012, 134, 5876 doi: 10.1021/ja211504a
[170]
Jin S B, Supur M, Addicoat M, et al. Creation of superheterojunction polymers via direct polycondensation: Segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J Am Chem Soc, 2015, 137, 7817 doi: 10.1021/jacs.5b03553
[171]
Prathapan S, Yang S I, Seth J, et al. Synthesis and excited-state photodynamics of perylene–porphyrin dyads. 1. parallel energy and charge transfer via a diphenylethyne linker. J Phys Chem B, 2001, 105, 8237 doi: 10.1021/jp010335i
[172]
O'Neil M P, Niemczyk M P, Svec W A, et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science, 1992, 257, 63 doi: 10.1126/science.257.5066.63
[173]
van der Boom T, Hayes R T, Zhao Y Y, et al. Charge transport in photofunctional nanoparticles self-assembled from zinc 5, 10, 15, 20-tetrakis(perylenediimide)porphyrin building blocks. J Am Chem Soc, 2002, 124, 9582 doi: 10.1021/ja026286k
[174]
Baram J, Shirman E, Ben-Shitrit N, et al. Control over self-assembly through reversible charging of the aromatic building blocks in photofunctional supramolecular fibers. J Am Chem Soc, 2008, 130, 14966 doi: 10.1021/ja807027w
[175]
Jung C, Müller B K, Lamb D C, et al. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc, 2006, 128, 5283 doi: 10.1021/ja0588104
[176]
Marcon V, Breiby D W, Pisula W, et al. Understanding structure–mobility relations for perylene tetracarboxydiimide derivatives. J Am Chem Soc, 2009, 131, 11426 doi: 10.1021/ja900963v
[177]
Dsouza R N, Pischel U, Nau W M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev, 2011, 111, 7941 doi: 10.1021/cr200213s
[178]
Yin X M, Wang Q X, Zheng Y J, et al. Molecular alignment and electronic structure of N, N'-dibutyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide molecules on MoS2 surfaces. ACS Appl Mater Interfaces, 2017, 9, 5566 doi: 10.1021/acsami.6b14000
[179]
Gigli L, Arletti R, Tabacchi G, et al. Structure and host-guest interactions of perylene-diimide dyes in zeolite L nanochannels. J Phys Chem C, 2018, 122, 3401 doi: 10.1021/acs.jpcc.7b10607
[180]
Liu N, Shi M M, Pan X W, et al. Photoinduced electron transfer and enhancement of photoconductivity in silicon nanoparticles/perylene diimide composites in a polymer matrix. J Phys Chem C, 2008, 112, 15865 doi: 10.1021/jp802385g
[181]
Xie A F, Liu B, Hall J E, et al. Self-assembled photoactive polyelectrolyte/perylene-diimide composites. Langmuir, 2005, 21, 4149 doi: 10.1021/la0471700
[182]
Gosztola D, Niemczyk M P, Svec W, et al. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J Phys Chem A, 2000, 104, 6545 doi: 10.1021/jp000706f
[183]
Adegoke O O, Jung I H, Orr M, et al. Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications. J Am Chem Soc, 2015, 137, 5759 doi: 10.1021/ja513002h
[184]
Shoaee S, Clarke T M, Huang C, et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J Am Chem Soc, 2010, 132, 12919 doi: 10.1021/ja1042726
[185]
Dubey R K, Niemi M, Kaunisto K, et al. Direct evidence of significantly different chemical behavior and excited-state dynamics of 1, 7- and 1, 6-regioisomers of pyrrolidinyl-substituted perylene diimide. Chem Eur J, 2013, 19, 6791 doi: 10.1002/chem.201203387
[186]
Ryan S T, Young R M, Henkelis J J , et al. Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems. J Am Chem Soc, 2015, 137, 15299 doi: 10.1021/jacs.5b10329
[187]
Ramos A M, Beckers E H A, Offermans T, et al. Photoinduced multistep electron transfer in an oligoaniline–oligo(p-phenylene vinylene)–perylene diimide molecular array. J Phys Chem A, 2004, 108, 8201 doi: 10.1021/jp048971e
[188]
Ryan S T J, del Barrio J, Ghosh I, et al. Efficient host–guest energy transfer in polycationic cyclophane–perylene diimide complexes in water. J Am Chem Soc, 2014, 136, 9053 doi: 10.1021/ja5032437
[189]
Santos E R D, Pina J, Venâncio T, et al. Photoinduced energy and electron-transfer reactions by polypyridine ruthenium(II) complexes containing a derivatized perylene diimide. J Phys Chem C, 2016, 120, 22831 doi: 10.1021/acs.jpcc.6b06693
[190]
Song Y, Zhang W, He S J, et al. Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS Appl Mater Interfaces, 2019, 11, 33676 doi: 10.1021/acsami.9b11416
[191]
Huang Y W, Fu L N, Zou W J, et al. Ammonia sensory properties based on single-crystalline micro/nanostructures of perylenediimide derivatives: Core-substituted effect. J Phys Chem C, 2011, 115, 10399 doi: 10.1021/jp200735m
[192]
Che Y K, Yang X M, Loser S, et al. Expedient vapor probing of organic amines using fluorescent nanofibers fabricated from an n-type organic semiconductor. Nano Lett, 2008, 8, 2219 doi: 10.1021/nl080761g
[193]
Schuster N J, Paley D W, Jockusch S, et al. Electron delocalization in perylene diimide helicenes. Angew Chem Int Ed, 2016, 55, 13519 doi: 10.1002/anie.201607878
[194]
Ball M L, Zhang B Y, Xu Q Z, et al. Influence of molecular conformation on electron transport in giant, conjugated macrocycles. J Am Chem Soc, 2018, 140, 10135 doi: 10.1021/jacs.8b06565
[195]
Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, et al. N-type organic thin-film transistor with high field-effect mobility based on a N, N'-dialkyl-3, 4, 9, 10-perylene tetracarboxylic diimide derivative. Appl Phys Lett, 2002, 80, 2517 doi: 10.1063/1.1467706
[196]
Wang X Y, Meng J Q, Yang X, et al. Fabrication of a perylene tetracarboxylic diimide–graphitic carbon nitride heterojunction photocatalyst for efficient degradation of aqueous organic pollutants. ACS Appl Mater Interfaces, 2019, 11, 588 doi: 10.1021/acsami.8b15122
[197]
Liu W Q, Bobbala S, Stern C L, et al. XCage: A tricyclic octacationic receptor for perylene diimide with picomolar affinity in water. J Am Chem Soc, 2020, 142, 3165 doi: 10.1021/jacs.9b12982
[198]
Zhang Q C, Jiang L, Wang J, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl Catal B, 2020, 277, 119122 doi: 10.1016/j.apcatb.2020.119122
[199]
Chen P, Blaney L, Cagnetta G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environ Sci Technol, 2019, 53, 1564 doi: 10.1021/acs.est.8b05827
[200]
Guldi D M. Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev, 2002, 31, 22 doi: 10.1039/b106962b
[201]
Liu L, Yue M T, Lu J R, et al. The enrichment of photo-catalysis via self-assembly perylenetetracarboxylic acid diimide polymer nanostructures incorporating TiO2 nano-particles. Appl Surf Sci, 2018, 456, 645 doi: 10.1016/j.apsusc.2018.06.183
[202]
Araújo R F, Silva C J R, Paiva M C, et al. Efficient dispersion of multi-walled carbon nanotubes in aqueous solution by non-covalent interaction with perylene bisimides. RSC Adv, 2013, 3, 24535 doi: 10.1039/c3ra42422g
[203]
Liu Y, Zhu E W, Bian L Y, et al. Robust graphene dispersion with amphiphlic perylene-polyglycidol. Mater Lett, 2014, 118, 188 doi: 10.1016/j.matlet.2013.12.073
[204]
Oelsner C, Schmidt C, Hauke F, et al. Interfacing strong electron acceptors with single wall carbon nanotubes. J Am Chem Soc, 2011, 133, 4580 doi: 10.1021/ja1108744
[205]
Tsarfati Y, Strauss V, Kuhri S, et al. Dispersing perylene diimide/SWCNT hybrids: Structural insights at the molecular level and fabricating advanced materials. J Am Chem Soc, 2015, 137, 7429 doi: 10.1021/jacs.5b03167
[206]
Zhang K, Wang J, Jiang W J, et al. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Appl Catal B, 2018, 232, 175 doi: 10.1016/j.apcatb.2018.03.059
[207]
Ji Q Y, Xu Z, Xiang W M, et al. Enhancing the performance of pollution degradation through secondary self-assembled composite supramolecular heterojunction photocatalyst BiOCl/PDI under visible light irradiation. Chemosphere, 2020, 253, 126751 doi: 10.1016/j.chemosphere.2020.126751
[208]
Gao Q Z, Xu J, Wang Z P, et al. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n–n heterojunction via π–π interaction and interfacial charge separation. Appl Catal B, 2020, 271, 118933 doi: 10.1016/j.apcatb.2020.118933
[209]
Wang H L, Zhao L L, Liu X Q, et al. Novel hydrogen bonding composite based on copper phthalocyanine/perylene diimide derivatives p–n heterojunction with improved photocatalytic activity. Dye Pigment, 2017, 137, 322 doi: 10.1016/j.dyepig.2016.11.014
[210]
Zeng W G, Cai T, Liu Y T, et al. An artificial organic-inorganic Z-scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity. Chem Eng J, 2020, 381, 122691 doi: 10.1016/j.cej.2019.122691
[211]
Cheng Y, Song R Q, Wu K, et al. The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(III)-doped) heterostructure. J Hazard Mater, 2020, 383, 121166 doi: 10.1016/j.jhazmat.2019.121166
[212]
Gao X M, Gao K L, Li X B, et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants. Catal Sci Technol, 2020, 10, 372 doi: 10.1039/C9CY01722D
[213]
Jeon T H, Koo M S, Kim H, et al. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal, 2018, 8, 11542 doi: 10.1021/acscatal.8b03521
[214]
Ding C M, Shi J Y, Wang Z L, et al. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal, 2017, 7, 675 doi: 10.1021/acscatal.6b03107
[215]
Brereton K R, Bonn A G, Miller A J M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett, 2018, 3, 1128 doi: 10.1021/acsenergylett.8b00255
[216]
Sheng Y Q, Miao H, Jing J F, et al. Perylene diimide anchored graphene 3D structure via π–π interaction for enhanced photoelectrochemical degradation performances. Appl Catal B, 2020, 272, 118897 doi: 10.1016/j.apcatb.2020.118897
[217]
Kirner J T, Stracke J J, Gregg B A, et al. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoO x cocatalyst. ACS Appl Mater Interfaces, 2014, 6, 13367 doi: 10.1021/am405598w
[218]
Kirner J T, Finke R G. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoO x catalyst. ACS Appl Mater Interfaces, 2017, 9, 27625 doi: 10.1021/acsami.7b05874
[219]
Linkous C A, Slattery D K. Solar photocatalytic hydrogen production from water using a dual bed photosystem-phase I final report and phase II proposal. Office of Scientific and Technical Information (OSTI), 2000
[220]
Kunz V, Stepanenko V, Würthner F. Embedding of a ruthenium(ii) water oxidation catalyst into nanofibers via self-assembly. Chem Commun, 2015, 51, 290 doi: 10.1039/C4CC08314H
[221]
Li J X, Li Z J, Ye C, et al. Visible light-induced photochemical oxygen evolution from water by 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catal Sci Technol, 2016, 6, 672 doi: 10.1039/C5CY01570G
[222]
Zhong Z, Li R F, Lin W L, et al. One-dimensional nanocrystals of cobalt perylene diimide polymer with in situ generated FeOOH for efficient photocatalytic water oxidation. Appl Catal B, 2020, 260, 118135 doi: 10.1016/j.apcatb.2019.118135
[223]
Zheng R J, Zhang M, Sun X, et al. Perylene-3, 4, 9, 10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl Catal B, 2019, 254, 667 doi: 10.1016/j.apcatb.2019.05.003
[224]
Vagnini M T, Smeigh A L, Blakemore J D, et al. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. PNAS, 2012, 109, 15651 doi: 10.1073/pnas.1202075109
[225]
Chen S, Li Y X, Wang C Y. Visible-light-driven photocatalytic H2 evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO2 catalysts. RSC Adv, 2015, 5, 15880 doi: 10.1039/C4RA16245E
[226]
Sun T, Song J G, Jia J, et al. Real roles of perylenetetracarboxylic diimide for enhancing photocatalytic H2-production. Nano Energy, 2016, 26, 83 doi: 10.1016/j.nanoen.2016.04.058
[227]
Chen Y Z, Li A X, Yue X Q, et al. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 2016, 8, 13228 doi: 10.1039/C5NR07893H
[228]
Li L W, Cai Z X. Structure control and photocatalytic performance of porous conjugated polymers based on perylene diimide. Polym Chem, 2016, 7, 4937 doi: 10.1039/C6PY00972G
[229]
Nolan M C, Walsh J J, Mears L L E, et al. pH dependent photocatalytic hydrogen evolution by self-assembled perylene bisimides. J Mater Chem A, 2017, 5, 7555 doi: 10.1039/C7TA01845B
[230]
Wang R, Li G, Zhang A D, et al. Efficient energy-level modification of novel pyran-annulated perylene diimides for photocatalytic water splitting. Chem Commun, 2017, 53, 6918 doi: 10.1039/C7CC03682E
[231]
Kong K Y, Zhang S C, Chu Y M, et al. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem Commun, 2019, 55, 8090 doi: 10.1039/C9CC03465J
[232]
Concepcion J J, House R L, Papanikolas J M, et al. Chemical approaches to artificial photosynthesis. PANS, 2012, 109, 15560 doi: 10.1073/pnas.1212254109
[233]
Xu Y C, Zheng J X, Lindner J O, et al. Consecutive charging of a perylene bisimide dye by multistep low-energy solar-light-induced electron transfer towards H2 evolution. Angew Chem Int Ed, 2020, 59, 10363 doi: 10.1002/anie.202001231
[234]
Li X, Lv X, Zhang Q Q, et al. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production. J Colloid Interface Sci, 2018, 525, 136 doi: 10.1016/j.jcis.2018.04.041
[235]
Yao L, Guijarro N, Boudoire F, et al. Establishing stability in organic semiconductor photocathodes for solar hydrogen production. J Am Chem Soc, 2020, 142, 7795 doi: 10.1021/jacs.0c00126
[236]
Weingarten A S, Kazantsev R V, Palmer L C, et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J Am Chem Soc, 2015, 137, 15241 doi: 10.1021/jacs.5b10027
[237]
Kazantsev R V, Dannenhoffer A J, Weingarten A S, et al. Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc, 2017, 139, 6120 doi: 10.1021/jacs.6b13156
[238]
Kazantsev R V, Dannenhoffer A J, Aytun T, et al. Molecular control of internal crystallization and photocatalytic function in supramolecular nanostructures. Chem, 2018, 4, 1596 doi: 10.1016/j.chempr.2018.04.002
[239]
Weingarten A S, Dannenhoffer A J, Kazantsev R V, et al. Chromophore dipole directs morphology and photocatalytic hydrogen generation. J Am Chem Soc, 2018, 140, 4965 doi: 10.1021/jacs.7b12641
[240]
Sai H, Erbas A, Dannenhoffer A, et al. Chromophore amphiphile-polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production. J Mater Chem A, 2020, 8, 158 doi: 10.1039/C9TA08974H
[241]
Dumele O, Chen J H, Passarelli J V, et al. Supramolecular energy materials. Adv Mater, 2020, 32, 1907247 doi: 10.1002/adma.201907247
[242]
Prier C K, Rankic D A, MacMillan D W C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem Rev, 2013, 113, 5322 doi: 10.1021/cr300503r
[243]
Anastas P T, Warner J. Green chemistry: Theory and practice. Oxford Univ Press, 1998
[244]
Zeman C J IV, Kim S, Zhang F, et al. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J Am Chem Soc, 2020, 142, 2204 doi: 10.1021/jacs.9b13027
[245]
Ghosh I. Excited radical anions and excited anions in visible light photoredox catalysis. Phys Sci Rev, 2019, 4, 20170185 doi: 10.1515/psr-2017-0185
[246]
Shang J T, Tang H Y, Ji H W, et al. Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chin J Catal, 2017, 38, 2094 doi: 10.1016/S1872-2067(17)62960-7
[247]
Wang L W, Zhang X, Yu X, et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater, 2019, 31, 1901965 doi: 10.1002/adma.201901965
[248]
Yang Z, Chen X Y. Semiconducting perylene diimide nanostructure: Multifunctional phototheranostic nanoplatform. Acc Chem Res, 2019, 52, 1245 doi: 10.1021/acs.accounts.9b00064
[249]
Hu X M, Lu F, Chen L, et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl Mater Interfaces, 2017, 9, 30458 doi: 10.1021/acsami.7b09633
[250]
Tang W, Yang Z, Wang S, et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano, 2018, 12, 2610 doi: 10.1021/acsnano.7b08628
[251]
Yang Z, Tian R, Wu J J, et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano, 2017, 11, 4247 doi: 10.1021/acsnano.7b01261
[252]
Fan Q L, Cheng K, Yang Z, et al. Photoacoustic imaging: Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater, 2015, 27, 774 doi: 10.1002/adma.201570028
[253]
Lü B, Chen Y F, Li P Y, et al. Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat Commun, 2019, 10, 767 doi: 10.1038/s41467-019-08434-4
[254]
Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol Phys, 1970, 18, 145 doi: 10.1080/00268977000100171
Fig. 1.  (Color online) Bond lengths of PDI molecules (a) without side chains and (b) with side chains obtained via DFT calculations. (c) Frontier orbital energy levels of PDI molecules (1), (2), (3) and (4). (Method and basic set: B3LYP 6-31+G*).

Fig. 2.  (Color online) (a) Model diagram of the PDI Π–Π stacking-assembled structure with permission from Ref. [86]. Crystal formation of propoxyethyl-PDI in methanol: (b) absorption, fluorescence and (c) spectra recorded at different time intervals following the injection of a minimal volume of chloroform solution with permission from Ref. [75]. (d) A higher magnification image showing discrete particles in approximately spherical shape with permission from Ref. [72]. (e) A higher-magnification image showing discrete, straight nanobelts, on which another belt is piled in a twisted conformation with one edge faced up with permission from Ref. [72]. (f) A large-area SEM image showing the growth of long nanobelts from the central seeding particulate aggregates with permission from Ref. [98]. (g) SEM image of pristine nanofibers deposited on the silica with permission from Ref. [99].

Fig. 3.  (Color online) (a) Mott–Schottky curves and (b) XPS valence-band spectrum of the self-assembled PDI supramolecular system. (c) Schematic illustration of the electronic energy level structure of PDI self-assembly with permission from Ref. [64].

Fig. 4.  (Color online) (a) Schematic representation of the equilibrium between reduced form (PDI2–), intermediate (PDI) and fully oxidized form (PDI). (b) Cyclic voltammograms of Br4Cl4PDI (PDI 2) and (CN)4Cl4PDI (PDI 3) in dichloromethane with permission from Ref. [151]. (c) Electronic circular dichroism, (b) UV-vis absorbance of WH[6] and WH[6][6] in dichloromethane (10-6 M, 1 cm path length) at room temperature with permission from Ref. [152]. (e) Cyclic voltammograms of 0.8 mM PDI in CHCl3/MeCN (3 : 2, v/v), 0.21 mM TDI in CHCl3/MeCN (4 : 1, v/v), and 0.1 mM QDI in CHCl3/MeCN (4 : 1, v/v). Scan rate: 0.5 V/s (electrolyte: 0.1 M TBAPF6) with permission from Ref. [153].

Fig. 1.  Symmetric and asymmetric structures of PDI molecules.

Fig. 5.  (Color online) (a) Diagrams showing the approaches relative to binary solvent mixing and metal-ligand-coordination-directed method. TEM images of (b) bulk PDI and (c) nano PDI with permission from Ref. [74]. UV–vis absorption (black) and fluorescence excitation (blue) and emission spectra of a thin film of (d) ND-PDI and (e) DD-PDI spin-cast on glass from a chloroform solution with permission from Ref. [72]. (f) Calculated ratio of 0–0 and 1–0 oscillator strengths for the linear and symmetric series as a function of |J0| using λ2 = 0.60 with permission from Ref. [162]. (g) Comparison of optical and electrical performance between various D/A heterojunctions with permission from Ref. [99]. The red and green columns denote fluorescence quenching and photocurrent measurement, respectively.

Fig. 6.  (Color online) (a) Fluorescence decay transients measured at 470 nm for 2%, 8%, and 80% hybrids with permission from Ref. [8]. (b) Fluorescence decay transients measured at 450 nm for pure PDIH, PDI-A, TiO2/PDIH, and TiO2/PDI-A. (c) The energy levels based on different stacking arrangements between PDI molecules via DFT calculations with permission from Ref. [10].

Fig. 7.  (Color online) Proposed mechanism of electron transmission in PDI self-assembly, wherein the HOMO and LUMO levels are obtained via DFT calculations.

Fig. 8.  (Color online) (a) Photodegradation curves for phenol (5 ppm) over H-PDI and J-PDI under visible light with permission from Ref. [19]. (b) Kinetics of photocatalytic degradation of an aqueous PNP under visible-light irradiating various PDI/GCN and reference catalysts with permission from Ref. [196]. (c) The first-order kinetics curve fitting for electrocatalytic (EC), photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of phenol by the PDI film (visible light, 2.1 V applied voltage) with permission from Ref. [81]. (d) PEC and EC degradation of phenol (5 ppm) on the PDI film at various applied voltages in Na2SO4 solution (0.1 mol/L) with permission from Ref. [81].

Fig. 9.  (Color online) (a) The photocatalytic process with charge transfer and accumulation on the surface of PDI self-assembly. (b) H2 production histogram of CA gels prepared with NaCl, PDDA, CaCl2 and ascorbic acid compared to insoluble protonated CA with permission from Ref. [70]. All gel phases produce more H2 than the solid-phase CA powder. (c) Schematic of gel showing that CA nanoribbons (in red) trap solvent water molecules (not shown for clarity) within a 3D architecture with permission from Ref. [70].

Fig. 10.  (Color online) (a) In vitro viability of HeLa cells with different concentrations of H-PDI and J-PDI at 600 ± 15 nm with permission from Ref. [19]. (b) Time-dependent tumor growth in a murine tumor model after treated with H-PDI and J-PDI with permission from Ref. [19]. (c) Thermal images of U87MG tumor-bearing mice after treatment with PBS and HMPDINs@TP upon 671 nm laser irradiation with permission from Ref. [84]. (d) Tumor growth curves of the mice after different treatments with permission from Ref. [89].

[1]
Bard A J. Photoelectrochemistry. Science, 1980, 207, 139 doi: 10.1126/science.207.4427.139
[2]
Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95, 69 doi: 10.1021/cr00033a004
[3]
Quay P D, Tilbrook B, Wong C S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science, 1992, 256, 74 doi: 10.1126/science.256.5053.74
[4]
Gustafsson O, Krusa M, Zencak Z, et al. Brown clouds over south asia: biomass or fossil fuel combustion. Science, 2009, 323, 495 doi: 10.1126/science.1164857
[5]
Wigley T M L. Could reducing fossil-fuel emissions cause global warming. Nature, 1991, 349, 503 doi: 10.1038/349503a0
[6]
Tong H, Ouyang S, Bi Y P, et al. Nano-photocatalytic materials: Possibilities and challenges. Adv Mater, 2012, 24, 229 doi: 10.1002/adma.201102752
[7]
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38, 253 doi: 10.1039/B800489G
[8]
Wei W Q, Liu D, Wei Z, et al. Short-range π–π stacking assembly on P25 TiO2 nanoparticles for enhanced visible-light photocatalysis. ACS Catal, 2017, 7, 652 doi: 10.1021/acscatal.6b03064
[9]
Wei W Q, Wei Z, Liu D, et al. Enhanced visible-light photocatalysis via back-electron transfer from palladium quantum dots to perylene diimide. Appl Catal B, 2018, 230, 49 doi: 10.1016/j.apcatb.2018.02.032
[10]
Wei W Q, Zhu Y F. TiO2@perylene diimide full-spectrum photocatalysts via semi-core–shell structure. Small, 2019, 15, 1903933 doi: 10.1002/smll.201903933
[11]
Hu W, Lin L, Zhang R Q, et al. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J Am Chem Soc, 2017, 139, 15429 doi: 10.1021/jacs.7b08474
[12]
Fujito H, Kunioku H, Kato D, et al. Layered perovskite oxychloride Bi4NbO8Cl: A stable visible light responsive photocatalyst for water splitting. ChemInform, 2016, 138, 2082 doi: 10.1002/chin.201626012
[13]
Wei Z, Liu M L, Zhang Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ Sci, 2018, 11, 2581 doi: 10.1039/C8EE01316K
[14]
Zeng G T, Qiu J, Li Z, et al. CO2 reduction to methanol on TiO2-passivated GaP photocatalysts. ACS Catal, 2014, 4, 3512 doi: 10.1021/cs500697w
[15]
Li X, Yu J G, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev, 2019, 119, 3962 doi: 10.1021/acs.chemrev.8b00400
[16]
Zeng L, Liu T, He C, et al. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via consecutive visible light-induced electron-transfer processes. J Am Chem Soc, 2016, 138, 3958 doi: 10.1021/jacs.5b12931
[17]
Ghosh I, Ghosh T, Bardagi J I, et al. Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science, 2014, 346, 725 doi: 10.1126/science.1258232
[18]
Robertson P K J, Robertson J M C, Bahnemann D W. Removal of microorganisms and their chemical metabolites from water using semiconductor photocatalysis. J Hazard Mater, 2012, 211/212, 161 doi: 10.1016/j.jhazmat.2011.11.058
[19]
Wang J, Liu D, Zhu Y F, et al. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl Catal B, 2018, 231, 251 doi: 10.1016/j.apcatb.2018.03.026
[20]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37 doi: 10.1038/238037a0
[21]
Chai Z G, Zeng T T, Li Q, et al. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J Am Chem Soc, 2016, 138, 10128 doi: 10.1021/jacs.6b06860
[22]
Hu J Q, Liu A L, Jin H L, et al. A versatile strategy for shish-kebab-like multi-heterostructured chalcogenides and enhanced photocatalytic hydrogen evolution. J Am Chem Soc, 2015, 137, 11004 doi: 10.1021/jacs.5b04784
[23]
Song H, Meng X G, Wang S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J Am Chem Soc, 2019, 141, 20507 doi: 10.1021/jacs.9b11440
[24]
He W W, Kim H K, Wamer W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J Am Chem Soc, 2014, 136, 750 doi: 10.1021/ja410800y
[25]
Zhang K, Liu J L, Wang L Y, et al. Near-complete suppression of oxygen evolution for photoelectrochemical H2O oxidative H2O2 synthesis. J Am Chem Soc, 2020, 142, 8641 doi: 10.1021/jacs.9b13410
[26]
Yu Y Y, Ma K, Zhuang R, et al. Hydroxyl-mediated formation of highly dispersed SnO2/TiO2 heterojunction via pulsed chemical vapor deposition to enhance photocatalytic activity. Ind Eng Chem Res, 2019, 58, 14655 doi: 10.1021/acs.iecr.9b02360
[27]
Wang Y Y, Jiang W J, Luo W J, et al. Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Appl Catal B, 2018, 237, 633 doi: 10.1016/j.apcatb.2018.06.013
[28]
Yang J J, Chen D M, Zhu Y, et al. 3D–3D porous Bi2WO6/ graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl Catal B, 2017, 205, 228 doi: 10.1016/j.apcatb.2016.12.035
[29]
Iwase A, Yoshino S, Takayama T, et al. Water splitting and CO2 reduction under visible light irradiation using Z-scheme systems consisting of metal sulfides, CoO x-loaded BiVO4, and a reduced graphene oxide electron mediator. J Am Chem Soc, 2016, 138, 10260 doi: 10.1021/jacs.6b05304
[30]
Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414, 625 doi: 10.1038/414625a
[31]
Weng B, Qi M Y, Han C, et al. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal, 2019, 9, 4642 doi: 10.1021/acscatal.9b00313
[32]
Ghosh S, Kouame N A, Ramos L, et al. Conducting polymer nanostructures for photocatalysis under visible light. Nat Mater, 2015, 14, 505 doi: 10.1038/nmat4220
[33]
Yang F X, Cheng S S, Zhang X T, et al. 2D organic materials for optoelectronic applications. Adv Mater, 2018, 30, 1702415 doi: 10.1002/adma.201702415
[34]
Cao S W, Low J, Yu J G, et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater, 2015, 27, 2150 doi: 10.1002/adma.201500033
[35]
Zhao N N, Yan L M, Zhao X Y, et al. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem Rev, 2019, 119, 1666 doi: 10.1021/acs.chemrev.8b00401
[36]
Li L L, Chen Y, Zhu J J. Recent advances in electrochemiluminescence analysis. Anal Chem, 2017, 89, 358 doi: 10.1021/acs.analchem.6b04675
[37]
Choudhuri I, Bhauriyal P, Pathak B. Recent advances in graphene-like 2D materials for spintronics applications. Chem Mater, 2019, 31, 8260 doi: 10.1021/acs.chemmater.9b02243
[38]
Niu W H, Yang Y. Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett, 2018, 3, 2796 doi: 10.1021/acsenergylett.8b01594
[39]
Meng Z, Stolz R M, Mendecki L, et al. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev, 2019, 119, 478 doi: 10.1021/acs.chemrev.8b00311
[40]
Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem Rev, 2016, 116, 7159 doi: 10.1021/acs.chemrev.6b00075
[41]
Wang Z H, Hu X, Liu Z Z, et al. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal, 2019, 9, 10260 doi: 10.1021/acscatal.9b03015
[42]
Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater, 2009, 8, 76 doi: 10.1038/nmat2317
[43]
Takeda H, Kamiyama H, Okamoto K, et al. Highly efficient and robust photocatalytic systems for CO2 reduction consisting of a Cu(I) photosensitizer and Mn(I) catalysts. J Am Chem Soc, 2018, 140, 17241 doi: 10.1021/jacs.8b10619
[44]
Higgins R F, Fatur S M, Shepard S G, et al. Uncovering the roles of oxygen in Cr(III) photoredox catalysis. J Am Chem Soc, 2016, 138, 5451 doi: 10.1021/jacs.6b02723
[45]
Hong D C, Kawanishi T, Tsukakoshi Y, et al. Efficient photocatalytic CO2 reduction by a Ni(II) complex having pyridine pendants through capturing a Mg2+ ion as a lewis-acid cocatalyst. J Am Chem Soc, 2019, 141, 20309 doi: 10.1021/jacs.9b10597
[46]
Zhang D, Wu L Z, Zhou L, et al. Photocatalytic hydrogen production from hantzsch 1, 4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. J Am Chem Soc, 2004, 126, 3440 doi: 10.1021/ja037631o
[47]
Fernández S, Franco F, Casadevall C, et al. A unified electro- and photocatalytic CO2 to CO reduction mechanism with aminopyridine cobalt complexes. J Am Chem Soc, 2020, 142, 120 doi: 10.1021/jacs.9b06633
[48]
Xu B, Troian-Gautier L, Dykstra R, et al. Photocatalyzed diastereoselective isomerization of cinnamyl chlorides to cyclopropanes. J Am Chem Soc, 2020, 142, 6206 doi: 10.1021/jacs.0c00147
[49]
Elvington M, Brown J, Arachchige S M, et al. Photocatalytic hydrogen production from water employing a Ru, Rh, Ru molecular device for photoinitiated electron collection. J Am Chem Soc, 2007, 129, 10644 doi: 10.1021/ja073123t
[50]
Cheung P L, Kapper S C, Zeng T, et al. Improving photocatalysis for the reduction of CO2 through non-covalent supramolecular assembly. J Am Chem Soc, 2019, 141, 14961 doi: 10.1021/jacs.9b07067
[51]
Rabe E J, Corp K L, Sobolewski A L, et al. Proton-coupled electron transfer from water to a model heptazine-based molecular photocatalyst. J Phys Chem Lett, 2018, 9, 6257 doi: 10.1021/acs.jpclett.8b02519
[52]
Wang C, Xie Z G, de Krafft K E, et al. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc, 2011, 133, 13445 doi: 10.1021/ja203564w
[53]
Yang X J, Liang T, Sun J X, et al. Template-directed synthesis of photocatalyst-encapsulating metal-organic frameworks with boosted photocatalytic activity. ACS Catal, 2019, 9, 7486 doi: 10.1021/acscatal.9b01783
[54]
Chambers M B, Wang X, Ellezam L, et al. Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: Substoichiometric effects in MIL-125-NH2. J Am Chem Soc, 2017, 139, 8222 doi: 10.1021/jacs.7b02186
[55]
Wei P F, Qi M Z, Wang Z P, et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J Am Chem Soc, 2018, 140, 4623 doi: 10.1021/jacs.8b00571
[56]
Wan Y, Wang L, Xu H, et al. A simple molecular design strategy for two-dimensional covalent organic framework capable of visible-light-driven water splitting. J Am Chem Soc, 2020, 149(9), 4508 doi: 10.1021/jacs.0c00564
[57]
Luo Q Z, Bao L L, Wang D S, et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene. J Phys Chem C, 2012, 116, 25806 doi: 10.1021/jp308150j
[58]
Floresyona D, Goubard F, Aubert P H, et al. Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light. Appl Catal B, 2017, 209, 23 doi: 10.1016/j.apcatb.2017.02.069
[59]
Zhang M, Rouch W D, McCulla R D. Conjugated polymers as photoredox catalysts: Visible-light-driven reduction of aryl aldehydes by poly(p-phenylene). Eur J Org Chem, 2012, 2012, 6187 doi: 10.1002/ejoc.201200437
[60]
Muktha B, Madras G, Guru Row T N, et al. Conjugated polymers for photocatalysis. J Phys Chem B, 2007, 111, 7994 doi: 10.1021/jp071096n
[61]
Ghosh S, Mallik A K, Basu R N. Enhanced photocatalytic activity and photoresponse of poly(3, 4-ethylenedioxythiophene) nanofibers decorated with gold nanoparticle under visible light. Sol Energy, 2018, 159, 548 doi: 10.1016/j.solener.2017.11.036
[62]
Li L W, Cai Z X, Wu Q H, et al. Rational design of porous conjugated polymers and roles of residual palladium for photocatalytic hydrogen production. J Am Chem Soc, 2016, 138, 7681 doi: 10.1021/jacs.6b03472
[63]
Zhang Z J, Zhu Y F, Chen X J, et al. A full-spectrum metal-free porphyrin supramolecular photocatalyst for dual functions of highly efficient hydrogen and oxygen evolution. Adv Mater, 2019, 31, 1806626 doi: 10.1002/adma.201806626
[64]
Liu D, Wang J, Bai X J, et al. Self-assembled PDINH supramolecular system for photocatalysis under visible light. Adv Mater, 2016, 28, 7284 doi: 10.1002/adma.201601168
[65]
Wei Z, Hu J S, Zhu K J, et al. Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Appl Catal B, 2018, 226, 616 doi: 10.1016/j.apcatb.2017.12.070
[66]
Würthner F, Saha-Möller C R, Fimmel B, et al. Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev, 2016, 116, 962 doi: 10.1021/acs.chemrev.5b00188
[67]
Zollinger H. Color chemistry. 3rd ed. Wiley-VCH: Weinheim, 2003
[68]
Wuerthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. ChemInform, 2004, 35, 1564 doi: 10.1002/chin.200430145
[69]
Saito G, Yoshida Y. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. ChemInform, 2007, 38, 1 doi: 10.1002/chin.200714259
[70]
Weingarten A S, Kazantsev R V, Palmer L C, et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat Chem, 2014, 6, 964 doi: 10.1038/nchem.2075
[71]
Ke D M, Zhan C L, Xu S P, et al. Self-assembled hollow nanospheres strongly enhance photoluminescence. J Am Chem Soc, 2011, 133, 11022 doi: 10.1021/ja202179t
[72]
Balakrishnan K, Datar A, Naddo T, et al. Effect of side-chain substituents on self-assembly of perylene diimide molecules: Morphology control. J Am Chem Soc, 2006, 128, 7390 doi: 10.1021/ja061810z
[73]
Bai S, Debnath S, Javid N, et al. Differential self-assembly and tunable emission of aromatic peptide bola-amphiphiles containing perylene bisimide in polar solvents including water. Langmuir, 2014, 30, 7576 doi: 10.1021/la501335e
[74]
Wang J, Shi W, Liu D, et al. Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance. Appl Catal B, 2017, 202, 289 doi: 10.1016/j.apcatb.2016.09.037
[75]
Balakrishnan K, Datar A, Oitker R, et al. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J Am Chem Soc, 2005, 127, 10496 doi: 10.1021/ja052940v
[76]
Jonkheijm P, van der Schoot P, Schenning A P H J, et al. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science, 2006, 313, 80 doi: 10.1126/science.1127884
[77]
Gong Q Y, Xing J, Huang Y J, et al. Perylene diimide oligomer nanoparticles with ultrahigh photothermal conversion efficiency for cancer theranostics. ACS Appl Bio Mater, 2020, 3, 1607 doi: 10.1021/acsabm.9b01187
[78]
Zang L. Interfacial donor–acceptor engineering of nanofiber materials to achieve photoconductivity and applications. Acc Chem Res, 2015, 48, 2705 doi: 10.1021/acs.accounts.5b00176
[79]
Che Y K, Datar A, Yang X M, et al. Enhancing one-dimensional charge transport through intermolecular π-electron delocalization: Conductivity improvement for organic nanobelts. J Am Chem Soc, 2007, 129, 6354 doi: 10.1021/ja070164g
[80]
Zang L, Che Y K, Moore J S. One-dimensional self-assembly of planar π-conjugated molecules: Adaptable building blocks for organic nanodevices. Acc Chem Res, 2008, 41, 1596 doi: 10.1021/ar800030w
[81]
Miao H, Yang J, Peng G L, et al. Enhancement of the degradation ability for organic pollutants via the synergistic effect of photoelectrocatalysis on a self-assembled perylene diimide (SA-PDI) thin film. Sci Bull, 2019, 64, 896 doi: 10.1016/j.scib.2019.05.006
[82]
Yang J, Miao H, Wei Y X, et al. Π-Π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Appl Catal B, 2019, 240, 225 doi: 10.1016/j.apcatb.2018.09.003
[83]
Yang J, Miao H, Li W L, et al. Designed synthesis of a p-Ag2S/n-PDI self-assembled supramolecular heterojunction for enhanced full-spectrum photocatalytic activity. J Mater Chem A, 2019, 7, 6482 doi: 10.1039/C9TA00580C
[84]
Miao H, Yang J, Wei Y X, et al. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B, 2018, 239, 61 doi: 10.1016/j.apcatb.2018.08.009
[85]
Wei Y X, Ma M G, Li W L, et al. Enhanced photocatalytic activity of PTCDI-C60 via π-π interaction. Appl Catal B, 2018, 238, 302 doi: 10.1016/j.apcatb.2018.07.043
[86]
Zhang Z J, Wang J, Liu D, et al. Highly efficient organic photocatalyst with full visible light spectrum through π–π stacking of TCNQ–PTCDI. ACS Appl Mater Interfaces, 2016, 8, 30225 doi: 10.1021/acsami.6b10186
[87]
Chen S, Wang C, Bunes B R, et al. Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. Appl Catal A, 2015, 498, 63 doi: 10.1016/j.apcata.2015.03.026
[88]
Chen S, Jacobs D L, Xu J K, et al. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv, 2014, 4, 48486 doi: 10.1039/C4RA09258A
[89]
Yang Z, Fan W P, Zou J H, et al. Precision cancer theranostic platform by in situ polymerization in perylene diimide-hybridized hollow mesoporous organosilica nanoparticles. J Am Chem Soc, 2019, 141, 14687 doi: 10.1021/jacs.9b06086
[90]
Stergiou A, Tagmatarchis N. Fluorene–perylene diimide arrays onto graphene sheets for photocatalysis. ACS Appl Mater Interfaces, 2016, 8, 21576 doi: 10.1021/acsami.6b06797
[91]
Chen S, Slattum P, Wang C Y, et al. Self-assembly of perylene imide molecules into 1D nanostructures: Methods, morphologies, and applications. Chem Rev, 2015, 115, 11967 doi: 10.1021/acs.chemrev.5b00312
[92]
Huang C, Barlow S, Marder S R. Perylene-3, 4, 9, 10-tetracarboxylic acid diimides: Synthesis, physical properties, and use in organic electronics. J Org Chem, 2011, 76, 2386 doi: 10.1021/jo2001963
[93]
Peng H Q, Niu L Y, Chen Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer. Chem Rev, 2015, 115, 7502 doi: 10.1021/cr5007057
[94]
Teo Y N, Kool E T. DNA-multichromophore systems. Chem Rev, 2012, 112, 4221 doi: 10.1021/cr100351g
[95]
Chen Z J, Debije M G, Debaerdemaeker T, et al. Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors: Studies on structural, electrochemical and charge transport properties. ChemPhysChem, 2004, 5, 137 doi: 10.1002/cphc.200300882
[96]
Würthner F, Sautter A, Schilling J. Synthesis of diazadibenzoperylenes and characterization of their structural, optical, redox, and coordination properties. J Org Chem, 2002, 67, 3037 doi: 10.1021/jo011133l
[97]
Yan P, Chowdhury A, Holman M W, et al. Self-organized perylene diimide nanofibers. J Phys Chem B, 2005, 109, 724 doi: 10.1021/jp046133e
[98]
Che Y K, Datar A, Balakrishnan K, et al. Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J Am Chem Soc, 2007, 129, 7234 doi: 10.1021/ja071903w
[99]
Che Y K, Huang H L, Xu M, et al. Interfacial engineering of organic nanofibril heterojunctions into highly photoconductive materials. J Am Chem Soc, 2011, 133, 1087 doi: 10.1021/ja109396g
[100]
Graser F, Hädicke E. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten. Liebigs Ann Chem, 1980, 1980, 1994 doi: 10.1002/jlac.198019801210
[101]
Graser F, Hädike E. Kristallstruktur und Farbe Bei Perylen-3, 4: 9, 10-bis(dicarboximid)-Pigmenten, 2. Liebigs Ann Chem, 1984, 1984, 483 doi: 10.1002/jlac.198419840308
[102]
Struijk C W, Sieval A B, Dakhorst J E J, et al. Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J Am Chem Soc, 2000, 122, 11057 doi: 10.1021/ja000991g
[103]
Datar A, Balakrishnan K, Yang X M, et al. Linearly polarized emission of an organic semiconductor nanobelt. J Phys Chem B, 2006, 110, 12327 doi: 10.1021/jp061739j
[104]
Yamagata H, Maxwell D S, Fan J, et al. HJ-aggregate behavior of crystalline 7, 8, 15, 16-tetraazaterrylene: Introducing a new design paradigm for organic materials. J Phys Chem C, 2014, 118, 28842 doi: 10.1021/jp509011u
[105]
Chen Y C, Lam J W Y, Kwok R T K, et al. Aggregation-induced emission: Fundamental understanding and future developments. Mater Horiz, 2019, 6, 428 doi: 10.1039/C8MH01331D
[106]
Che Y K, Yang X M, Liu G L, et al. Ultrathin n-type organic nanoribbons with high photoconductivity and application in optoelectronic vapor sensing of explosives. J Am Chem Soc, 2010, 132, 5743 doi: 10.1021/ja909797q
[107]
Rodler F, Schade B, Jäger C M, et al. Amphiphilic perylene–calix. J Am Chem Soc, 2015, 137, 3308 doi: 10.1021/ja512048t
[108]
Wang J L, Yu Y, Zhang L Z. Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B, 2013, 136/137, 112 doi: 10.1016/j.apcatb.2013.02.009
[109]
Liang Y M, Lan S Q, Deng P, et al. Regioregular and regioirregular poly(selenophene-perylene diimide) acceptors for polymer–polymer solar cells. ACS Appl Mater Interfaces, 2018, 10, 32397 doi: 10.1021/acsami.8b09061
[110]
Li X, Wang H, Nakayama H, et al. Multi-sulfur-annulated fused perylene diimides for organic solar cells with low open-circuit voltage loss. ACS Appl Energy Mater, 2019, 2, 3805 doi: 10.1021/acsaem.9b00492
[111]
Samanta S K, Song I, Yoo J H, et al. Organic n-channel transistors based on. ACS Appl Mater Interfaces, 2018, 10, 32444 doi: 10.1021/acsami.8b10831
[112]
Yang J, Yin Y, Chen F, et al. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl Mater Interfaces, 2018, 10, 23263 doi: 10.1021/acsami.8b06306
[113]
Woodhouse M, Perkins C L, Rawls M T, et al. Non-conjugated polymers for organic photovoltaics: Physical and optoelectronic properties of poly(perylene diimides). J Phys Chem C, 2010, 114, 6784 doi: 10.1021/jp910738a
[114]
Zhang J, Li Y, Huang J, et al. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J Am Chem Soc, 2017, 139, 16092 doi: 10.1021/jacs.7b09998
[115]
An T C, An J B, Gao Y P, et al. Photocatalytic degradation and mineralization mechanism and toxicity assessment of antivirus drug acyclovir: Experimental and theoretical studies. Appl Catal B, 2015, 164, 279 doi: 10.1016/j.apcatb.2014.09.009
[116]
Iwase M, Yamada K, Kurisaki T, et al. Visible-light photocatalysis with phosphorus-doped titanium(IV) oxide particles prepared using a phosphide compound. Appl Catal B, 2013, 132/133, 39 doi: 10.1016/j.apcatb.2012.11.014
[117]
Kitano S, Hashimoto K, Kominami H. Photocatalytic degradation of 2-propanol over metal-ion-loaded titanium(IV) oxide under visible light irradiation: Effect of physical properties of nano-crystalline titanium(IV) oxide. Appl Catal B, 2011, 101, 206 doi: 10.1016/j.apcatb.2010.09.021
[118]
Li Q, Shang J K. Composite photocatalyst of nitrogen and fluorine codoped titanium oxide nanotube arrays with dispersed palladium oxide nanoparticles for enhanced visible light photocatalytic performance. Environ Sci Technol, 2010, 44, 3493 doi: 10.1021/es903928n
[119]
Shi Q, Murcia-López S, Tang P Y, et al. Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal, 2018, 8, 3331 doi: 10.1021/acscatal.7b04277
[120]
An L J, Onishi H. Electron–hole recombination controlled by metal doping sites in NaTaO3 photocatalysts. ACS Catal, 2015, 5, 3196 doi: 10.1021/acscatal.5b00484
[121]
Liu X, Gao S, Xu H, et al. Stable blue TiO2– x nanoparticles for efficient visible light photocatalysts. Nanoscale, 2013, 5, 1870 doi: 10.1039/c2nr33563h
[122]
Zhu Q, Peng Y, Lin L, et al. Green synthetic approach for Ti3+ self-doped TiO2– x nanoparticles with efficient visible light photocatalytic activity. J Mater Chem A, 2014, 2, 4429 doi: 10.1039/C3TA14484D
[123]
Huang H W, Zhou C, Jiao X C, et al. Subsurface defect engineering in single-unit-cell Bi2WO6 monolayers boosts solar-driven photocatalytic performance. ACS Catal, 2020, 10, 1439 doi: 10.1021/acscatal.9b04789
[124]
Jiang D, Wang W Z, Zhang L, et al. Insights into the surface-defect dependence of photoreactivity over CeO2 nanocrystals with well-defined crystal facets. ACS Catal, 2015, 5, 4851 doi: 10.1021/acscatal.5b01128
[125]
Cushing S K, Meng F K, Zhang J Y, et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. ACS Catal, 2017, 7, 1742 doi: 10.1021/acscatal.6b02177
[126]
Seybold G, Wagenblast G. New perylene and violanthrone dyestuffs for fluorescent collectors. Dye Pigment, 1989, 11, 303 doi: 10.1016/0143-7208(89)85048-X
[127]
Sadrai M, Hadel L, Sauers R R, et al. Lasing action in a family of perylene derivatives: Singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations. J Phys Chem, 1992, 96, 7988 doi: 10.1021/j100199a032
[128]
Ahrens M J, Fuller M J, Wasielewski M R. Cyanated perylene-3, 4-dicarboximides and perylene-3, 4: 9, 10-bis(dicarboximide): Facile chromophoric oxidants for organic photonics and electronics. Chem Mater, 2003, 15, 2684 doi: 10.1021/cm034140u
[129]
Zhao Y Y, Wasielewski M R. 3, 4: 9, 10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors. Tetrahedron Lett, 1999, 40, 7047 doi: 10.1016/S0040-4039(99)01468-9
[130]
Lukas A S, Zhao Y Y, Miller S E, et al. Biomimetic electron transfer using low energy excited states: A green perylene-based analogue of chlorophylla. J Phys Chem B, 2002, 106, 1299 doi: 10.1021/jp014073w
[131]
Yoshida J I, Kataoka K, Horcajada R, et al. Modern strategies in electroorganic synthesis. Chem Rev, 2008, 108, 2265 doi: 10.1021/cr0680843
[132]
Kingston C, Palkowitz M D, Takahira Y, et al. A survival guide for the "electro-curious". Acc Chem Res, 2020, 53, 72 doi: 10.1021/acs.accounts.9b00539
[133]
Ruffoni A, Juliá F, Svejstrup T D, et al. Practical and regioselective amination of arenes using alkyl amines. Nat Chem, 2019, 11, 426 doi: 10.1038/s41557-019-0254-5
[134]
Bariwal J, van der Eycken E. C–N bond forming cross-coupling reactions: An overview. Chem Soc Rev, 2013, 42, 9283 doi: 10.1039/c3cs60228a
[135]
Moeller K D. Synthetic applications of anodic electrochemistry. Tetrahedron, 2000, 56, 9527 doi: 10.1016/S0040-4020(00)00840-1
[136]
Yang Q L, Wang X Y, Lu J Y, et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J Am Chem Soc, 2018, 140, 11487 doi: 10.1021/jacs.8b07380
[137]
Morofuji T, Shimizu A, Yoshida J I. Electrochemical C–H amination: Synthesis of aromatic primary amines viaN-arylpyridinium ions. J Am Chem Soc, 2013, 135, 5000 doi: 10.1021/ja402083e
[138]
Ham W S, Hillenbrand J, Jacq J, et al. Divergent late-stage (hetero)aryl C–H amination by the pyridinium radical cation. Angew Chem Int Ed, 2019, 58, 532 doi: 10.1002/anie.201810262
[139]
Hayashi R, Shimizu A, Yoshida J I. The stabilized cation pool method: Metal- and oxidant-free benzylic C–H/aromatic C–H cross-coupling. J Am Chem Soc, 2016, 138, 8400 doi: 10.1021/jacs.6b05273
[140]
Hou Z W, Mao Z Y, Melcamu Y Y, et al. Back cover: Electrochemical synthesis of imidazo-fused N-heteroaromatic compounds through a C–N bond-forming radical. Angew Chem Int Ed, 2018, 57, 1722 doi: 10.1002/anie.201800266
[141]
Hou Z W, Mao Z Y, Zhao H B, et al. Frontispiece: electrochemical C–H/N–H functionalization for the synthesis of highly functionalized (aza)indoles. Angew Chem Int Ed, 2016, 55, 9168 doi: 10.1002/anie.201683261
[142]
Waldvogel S R, Selt M. Electrochemical allylic oxidation of olefins: Sustainable and safe. Angew Chem Int Ed, 2016, 55, 12578 doi: 10.1002/anie.201606727
[143]
Jiang Y Y, Xu K, Zeng C C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem Rev, 2018, 118, 4485 doi: 10.1021/acs.chemrev.7b00271
[144]
Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem Rev, 2017, 117, 13230 doi: 10.1021/acs.chemrev.7b00397
[145]
Jutand A. Contribution of electrochemistry to organometallic catalysis. Chem Rev, 2008, 108, 2300 doi: 10.1021/cr068072h
[146]
Feng R Z, Smith J A, Moeller K D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc Chem Res, 2017, 50, 2346 doi: 10.1021/acs.accounts.7b00287
[147]
Krieg E, Weissman H, Shimoni E, et al. Understanding the effect of fluorocarbons in aqueous supramolecular polymerization: Ultrastrong noncovalent binding and cooperativity. J Am Chem Soc, 2014, 136, 9443 doi: 10.1021/ja503906p
[148]
Zhao Q L, Zhang S, Liu Y, et al. Tetraphenylethenyl-modified perylene bisimide: Aggregation-induced red emission, electrochemical properties and ordered microstructures. J Mater Chem, 2012, 22, 7387 doi: 10.1039/c2jm16613e
[149]
Hendsbee A D, Sun J P, Law W K, et al. Synthesis, self-assembly, and solar cell performance of N-annulated perylene diimide non-fullerene acceptors. Chem Mater, 2016, 28, 7098 doi: 10.1021/acs.chemmater.6b03292
[150]
Li G, Zhao Y B, Li J B, et al. Synthesis, characterization, physical properties, and OLED application of single BN-fused perylene diimide. J Org Chem, 2015, 80, 196 doi: 10.1021/jo502296z
[151]
Seifert S, Schmidt D, Würthner F. An ambient stable core-substituted perylene bisimide dianion: Isolation and single crystal structure analysis. Chem Sci, 2015, 6, 1663 doi: 10.1039/C4SC03671A
[152]
Schuster N J, Joyce L A, Paley D W, et al. The structural origins of intense circular dichroism in a waggling helicene nanoribbon. J Am Chem Soc, 2020, 142, 7066 doi: 10.1021/jacs.0c00646
[153]
Lee S K, Zu Y B, Herrmann A, et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J Am Chem Soc, 1999, 121, 3513 doi: 10.1021/ja984188m
[154]
Zhang A D, Jiang W, Wang Z H. Fulvalene-embedded perylene diimide and its stable radical anion. Angew Chem, 2020, 132, 762 doi: 10.1002/ange.201912536
[155]
Jones B A, Facchetti A, Wasielewski M R, et al. Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. J Am Chem Soc, 2007, 129, 15259 doi: 10.1021/ja075242e
[156]
Peurifoy S R, Castro E, Liu F, et al. Three-dimensional graphene nanostructures. J Am Chem Soc, 2018, 140, 9341 doi: 10.1021/jacs.8b04119
[157]
Gao G P, Liang N N, Geng H, et al. Spiro-fused perylene diimide arrays. J Am Chem Soc, 2017, 139, 15914 doi: 10.1021/jacs.7b09140
[158]
Liu B, Böckmann M, Jiang W, et al. Perylene diimide-embedded double. J Am Chem Soc, 2020, 142, 7092 doi: 10.1021/jacs.0c00954
[159]
Langhals H. Cyclic carboxylic imide structures as structure elements of high stability. Novel developments in perylene dye chemistry. Heterocycles, 1995, 1, 477 doi: 10.3987/REV-94-SR2
[160]
Wang W, Wang L Q, Palmer B J, et al. Cyclization and catenation directed by molecular self-assembly. J Am Chem Soc, 2006, 128, 11150 doi: 10.1021/ja061826p
[161]
Barendt T A, Ferreira L, Marques I, et al. Anion- and solvent-induced rotary dynamics and sensing in a perylene diimide. J Am Chem Soc, 2017, 139, 9026 doi: 10.1021/jacs.7b04295
[162]
Pochas C M, Kistler K A, Yamagata H, et al. Contrasting photophysical properties of star-shaped vs linear perylene diimide complexes. J Am Chem Soc, 2013, 135, 3056 doi: 10.1021/ja3087449
[163]
Wang J, Yang Z, Gao X X, et al. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B, 2017, 217, 169 doi: 10.1016/j.apcatb.2017.05.034
[164]
You C C, Würthner F. Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(II) corner to electrochemically active molecular squares. J Am Chem Soc, 2003, 125, 9716 doi: 10.1021/ja029648x
[165]
Delgado M C R, Kim E G, Filho D A D S, et al. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: A density functional theory investigation. J Am Chem Soc, 2010, 132, 3375 doi: 10.1021/ja908173x
[166]
Kim Y J, Lee Y, Park K, et al. Hierarchical self-assembly of perylene diimide (PDI) crystals. J Phys Chem Lett, 2020, 11, 3934 doi: 10.1021/acs.jpclett.0c01226
[167]
Zhou E J, Cong J Z, Wei Q S, et al. Berichtigung: all-polymer solar cells from perylene diimide based copolymers: Material design and phase separation control. Angew Chem, 2011, 123, 8120 doi: 10.1002/ange.201104815
[168]
Luo Z H, Wu F, Zhang T, et al. Designing a perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability. Angew Chem Int Ed, 2019, 58, 8520 doi: 10.1002/anie.201904195
[169]
Dössel L F, Kamm V, Howard I A, et al. Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes. J Am Chem Soc, 2012, 134, 5876 doi: 10.1021/ja211504a
[170]
Jin S B, Supur M, Addicoat M, et al. Creation of superheterojunction polymers via direct polycondensation: Segregated and bicontinuous donor–acceptor π-columnar arrays in covalent organic frameworks for long-lived charge separation. J Am Chem Soc, 2015, 137, 7817 doi: 10.1021/jacs.5b03553
[171]
Prathapan S, Yang S I, Seth J, et al. Synthesis and excited-state photodynamics of perylene–porphyrin dyads. 1. parallel energy and charge transfer via a diphenylethyne linker. J Phys Chem B, 2001, 105, 8237 doi: 10.1021/jp010335i
[172]
O'Neil M P, Niemczyk M P, Svec W A, et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science, 1992, 257, 63 doi: 10.1126/science.257.5066.63
[173]
van der Boom T, Hayes R T, Zhao Y Y, et al. Charge transport in photofunctional nanoparticles self-assembled from zinc 5, 10, 15, 20-tetrakis(perylenediimide)porphyrin building blocks. J Am Chem Soc, 2002, 124, 9582 doi: 10.1021/ja026286k
[174]
Baram J, Shirman E, Ben-Shitrit N, et al. Control over self-assembly through reversible charging of the aromatic building blocks in photofunctional supramolecular fibers. J Am Chem Soc, 2008, 130, 14966 doi: 10.1021/ja807027w
[175]
Jung C, Müller B K, Lamb D C, et al. A new photostable terrylene diimide dye for applications in single molecule studies and membrane labeling. J Am Chem Soc, 2006, 128, 5283 doi: 10.1021/ja0588104
[176]
Marcon V, Breiby D W, Pisula W, et al. Understanding structure–mobility relations for perylene tetracarboxydiimide derivatives. J Am Chem Soc, 2009, 131, 11426 doi: 10.1021/ja900963v
[177]
Dsouza R N, Pischel U, Nau W M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem Rev, 2011, 111, 7941 doi: 10.1021/cr200213s
[178]
Yin X M, Wang Q X, Zheng Y J, et al. Molecular alignment and electronic structure of N, N'-dibutyl-3, 4, 9, 10-perylene-tetracarboxylic-diimide molecules on MoS2 surfaces. ACS Appl Mater Interfaces, 2017, 9, 5566 doi: 10.1021/acsami.6b14000
[179]
Gigli L, Arletti R, Tabacchi G, et al. Structure and host-guest interactions of perylene-diimide dyes in zeolite L nanochannels. J Phys Chem C, 2018, 122, 3401 doi: 10.1021/acs.jpcc.7b10607
[180]
Liu N, Shi M M, Pan X W, et al. Photoinduced electron transfer and enhancement of photoconductivity in silicon nanoparticles/perylene diimide composites in a polymer matrix. J Phys Chem C, 2008, 112, 15865 doi: 10.1021/jp802385g
[181]
Xie A F, Liu B, Hall J E, et al. Self-assembled photoactive polyelectrolyte/perylene-diimide composites. Langmuir, 2005, 21, 4149 doi: 10.1021/la0471700
[182]
Gosztola D, Niemczyk M P, Svec W, et al. Excited doublet states of electrochemically generated aromatic imide and diimide radical anions. J Phys Chem A, 2000, 104, 6545 doi: 10.1021/jp000706f
[183]
Adegoke O O, Jung I H, Orr M, et al. Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications. J Am Chem Soc, 2015, 137, 5759 doi: 10.1021/ja513002h
[184]
Shoaee S, Clarke T M, Huang C, et al. Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. J Am Chem Soc, 2010, 132, 12919 doi: 10.1021/ja1042726
[185]
Dubey R K, Niemi M, Kaunisto K, et al. Direct evidence of significantly different chemical behavior and excited-state dynamics of 1, 7- and 1, 6-regioisomers of pyrrolidinyl-substituted perylene diimide. Chem Eur J, 2013, 19, 6791 doi: 10.1002/chem.201203387
[186]
Ryan S T, Young R M, Henkelis J J , et al. Energy and electron transfer dynamics within a series of perylene diimide/cyclophane systems. J Am Chem Soc, 2015, 137, 15299 doi: 10.1021/jacs.5b10329
[187]
Ramos A M, Beckers E H A, Offermans T, et al. Photoinduced multistep electron transfer in an oligoaniline–oligo(p-phenylene vinylene)–perylene diimide molecular array. J Phys Chem A, 2004, 108, 8201 doi: 10.1021/jp048971e
[188]
Ryan S T J, del Barrio J, Ghosh I, et al. Efficient host–guest energy transfer in polycationic cyclophane–perylene diimide complexes in water. J Am Chem Soc, 2014, 136, 9053 doi: 10.1021/ja5032437
[189]
Santos E R D, Pina J, Venâncio T, et al. Photoinduced energy and electron-transfer reactions by polypyridine ruthenium(II) complexes containing a derivatized perylene diimide. J Phys Chem C, 2016, 120, 22831 doi: 10.1021/acs.jpcc.6b06693
[190]
Song Y, Zhang W, He S J, et al. Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS Appl Mater Interfaces, 2019, 11, 33676 doi: 10.1021/acsami.9b11416
[191]
Huang Y W, Fu L N, Zou W J, et al. Ammonia sensory properties based on single-crystalline micro/nanostructures of perylenediimide derivatives: Core-substituted effect. J Phys Chem C, 2011, 115, 10399 doi: 10.1021/jp200735m
[192]
Che Y K, Yang X M, Loser S, et al. Expedient vapor probing of organic amines using fluorescent nanofibers fabricated from an n-type organic semiconductor. Nano Lett, 2008, 8, 2219 doi: 10.1021/nl080761g
[193]
Schuster N J, Paley D W, Jockusch S, et al. Electron delocalization in perylene diimide helicenes. Angew Chem Int Ed, 2016, 55, 13519 doi: 10.1002/anie.201607878
[194]
Ball M L, Zhang B Y, Xu Q Z, et al. Influence of molecular conformation on electron transport in giant, conjugated macrocycles. J Am Chem Soc, 2018, 140, 10135 doi: 10.1021/jacs.8b06565
[195]
Malenfant P R L, Dimitrakopoulos C D, Gelorme J D, et al. N-type organic thin-film transistor with high field-effect mobility based on a N, N'-dialkyl-3, 4, 9, 10-perylene tetracarboxylic diimide derivative. Appl Phys Lett, 2002, 80, 2517 doi: 10.1063/1.1467706
[196]
Wang X Y, Meng J Q, Yang X, et al. Fabrication of a perylene tetracarboxylic diimide–graphitic carbon nitride heterojunction photocatalyst for efficient degradation of aqueous organic pollutants. ACS Appl Mater Interfaces, 2019, 11, 588 doi: 10.1021/acsami.8b15122
[197]
Liu W Q, Bobbala S, Stern C L, et al. XCage: A tricyclic octacationic receptor for perylene diimide with picomolar affinity in water. J Am Chem Soc, 2020, 142, 3165 doi: 10.1021/jacs.9b12982
[198]
Zhang Q C, Jiang L, Wang J, et al. Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. Appl Catal B, 2020, 277, 119122 doi: 10.1016/j.apcatb.2020.119122
[199]
Chen P, Blaney L, Cagnetta G, et al. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environ Sci Technol, 2019, 53, 1564 doi: 10.1021/acs.est.8b05827
[200]
Guldi D M. Fullerene–porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev, 2002, 31, 22 doi: 10.1039/b106962b
[201]
Liu L, Yue M T, Lu J R, et al. The enrichment of photo-catalysis via self-assembly perylenetetracarboxylic acid diimide polymer nanostructures incorporating TiO2 nano-particles. Appl Surf Sci, 2018, 456, 645 doi: 10.1016/j.apsusc.2018.06.183
[202]
Araújo R F, Silva C J R, Paiva M C, et al. Efficient dispersion of multi-walled carbon nanotubes in aqueous solution by non-covalent interaction with perylene bisimides. RSC Adv, 2013, 3, 24535 doi: 10.1039/c3ra42422g
[203]
Liu Y, Zhu E W, Bian L Y, et al. Robust graphene dispersion with amphiphlic perylene-polyglycidol. Mater Lett, 2014, 118, 188 doi: 10.1016/j.matlet.2013.12.073
[204]
Oelsner C, Schmidt C, Hauke F, et al. Interfacing strong electron acceptors with single wall carbon nanotubes. J Am Chem Soc, 2011, 133, 4580 doi: 10.1021/ja1108744
[205]
Tsarfati Y, Strauss V, Kuhri S, et al. Dispersing perylene diimide/SWCNT hybrids: Structural insights at the molecular level and fabricating advanced materials. J Am Chem Soc, 2015, 137, 7429 doi: 10.1021/jacs.5b03167
[206]
Zhang K, Wang J, Jiang W J, et al. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Appl Catal B, 2018, 232, 175 doi: 10.1016/j.apcatb.2018.03.059
[207]
Ji Q Y, Xu Z, Xiang W M, et al. Enhancing the performance of pollution degradation through secondary self-assembled composite supramolecular heterojunction photocatalyst BiOCl/PDI under visible light irradiation. Chemosphere, 2020, 253, 126751 doi: 10.1016/j.chemosphere.2020.126751
[208]
Gao Q Z, Xu J, Wang Z P, et al. Enhanced visible photocatalytic oxidation activity of perylene diimide/g-C3N4 n–n heterojunction via π–π interaction and interfacial charge separation. Appl Catal B, 2020, 271, 118933 doi: 10.1016/j.apcatb.2020.118933
[209]
Wang H L, Zhao L L, Liu X Q, et al. Novel hydrogen bonding composite based on copper phthalocyanine/perylene diimide derivatives p–n heterojunction with improved photocatalytic activity. Dye Pigment, 2017, 137, 322 doi: 10.1016/j.dyepig.2016.11.014
[210]
Zeng W G, Cai T, Liu Y T, et al. An artificial organic-inorganic Z-scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity. Chem Eng J, 2020, 381, 122691 doi: 10.1016/j.cej.2019.122691
[211]
Cheng Y, Song R Q, Wu K, et al. The enhanced visible-light-driven antibacterial performances of PTCDI-PANI(Fe(III)-doped) heterostructure. J Hazard Mater, 2020, 383, 121166 doi: 10.1016/j.jhazmat.2019.121166
[212]
Gao X M, Gao K L, Li X B, et al. Hybrid PDI/BiOCl heterojunction with enhanced interfacial charge transfer for a full-spectrum photocatalytic degradation of pollutants. Catal Sci Technol, 2020, 10, 372 doi: 10.1039/C9CY01722D
[213]
Jeon T H, Koo M S, Kim H, et al. Dual-functional photocatalytic and photoelectrocatalytic systems for energy- and resource-recovering water treatment. ACS Catal, 2018, 8, 11542 doi: 10.1021/acscatal.8b03521
[214]
Ding C M, Shi J Y, Wang Z L, et al. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal, 2017, 7, 675 doi: 10.1021/acscatal.6b03107
[215]
Brereton K R, Bonn A G, Miller A J M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett, 2018, 3, 1128 doi: 10.1021/acsenergylett.8b00255
[216]
Sheng Y Q, Miao H, Jing J F, et al. Perylene diimide anchored graphene 3D structure via π–π interaction for enhanced photoelectrochemical degradation performances. Appl Catal B, 2020, 272, 118897 doi: 10.1016/j.apcatb.2020.118897
[217]
Kirner J T, Stracke J J, Gregg B A, et al. Visible-light-assisted photoelectrochemical water oxidation by thin films of a phosphonate-functionalized perylene diimide plus CoO x cocatalyst. ACS Appl Mater Interfaces, 2014, 6, 13367 doi: 10.1021/am405598w
[218]
Kirner J T, Finke R G. Sensitization of nanocrystalline metal oxides with a phosphonate-functionalized perylene diimide for photoelectrochemical water oxidation with a CoO x catalyst. ACS Appl Mater Interfaces, 2017, 9, 27625 doi: 10.1021/acsami.7b05874
[219]
Linkous C A, Slattery D K. Solar photocatalytic hydrogen production from water using a dual bed photosystem-phase I final report and phase II proposal. Office of Scientific and Technical Information (OSTI), 2000
[220]
Kunz V, Stepanenko V, Würthner F. Embedding of a ruthenium(ii) water oxidation catalyst into nanofibers via self-assembly. Chem Commun, 2015, 51, 290 doi: 10.1039/C4CC08314H
[221]
Li J X, Li Z J, Ye C, et al. Visible light-induced photochemical oxygen evolution from water by 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. Catal Sci Technol, 2016, 6, 672 doi: 10.1039/C5CY01570G
[222]
Zhong Z, Li R F, Lin W L, et al. One-dimensional nanocrystals of cobalt perylene diimide polymer with in situ generated FeOOH for efficient photocatalytic water oxidation. Appl Catal B, 2020, 260, 118135 doi: 10.1016/j.apcatb.2019.118135
[223]
Zheng R J, Zhang M, Sun X, et al. Perylene-3, 4, 9, 10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets. Appl Catal B, 2019, 254, 667 doi: 10.1016/j.apcatb.2019.05.003
[224]
Vagnini M T, Smeigh A L, Blakemore J D, et al. Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. PNAS, 2012, 109, 15651 doi: 10.1073/pnas.1202075109
[225]
Chen S, Li Y X, Wang C Y. Visible-light-driven photocatalytic H2 evolution from aqueous suspensions of perylene diimide dye-sensitized Pt/TiO2 catalysts. RSC Adv, 2015, 5, 15880 doi: 10.1039/C4RA16245E
[226]
Sun T, Song J G, Jia J, et al. Real roles of perylenetetracarboxylic diimide for enhancing photocatalytic H2-production. Nano Energy, 2016, 26, 83 doi: 10.1016/j.nanoen.2016.04.058
[227]
Chen Y Z, Li A X, Yue X Q, et al. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale, 2016, 8, 13228 doi: 10.1039/C5NR07893H
[228]
Li L W, Cai Z X. Structure control and photocatalytic performance of porous conjugated polymers based on perylene diimide. Polym Chem, 2016, 7, 4937 doi: 10.1039/C6PY00972G
[229]
Nolan M C, Walsh J J, Mears L L E, et al. pH dependent photocatalytic hydrogen evolution by self-assembled perylene bisimides. J Mater Chem A, 2017, 5, 7555 doi: 10.1039/C7TA01845B
[230]
Wang R, Li G, Zhang A D, et al. Efficient energy-level modification of novel pyran-annulated perylene diimides for photocatalytic water splitting. Chem Commun, 2017, 53, 6918 doi: 10.1039/C7CC03682E
[231]
Kong K Y, Zhang S C, Chu Y M, et al. A self-assembled perylene diimide nanobelt for efficient visible-light-driven photocatalytic H2 evolution. Chem Commun, 2019, 55, 8090 doi: 10.1039/C9CC03465J
[232]
Concepcion J J, House R L, Papanikolas J M, et al. Chemical approaches to artificial photosynthesis. PANS, 2012, 109, 15560 doi: 10.1073/pnas.1212254109
[233]
Xu Y C, Zheng J X, Lindner J O, et al. Consecutive charging of a perylene bisimide dye by multistep low-energy solar-light-induced electron transfer towards H2 evolution. Angew Chem Int Ed, 2020, 59, 10363 doi: 10.1002/anie.202001231
[234]
Li X, Lv X, Zhang Q Q, et al. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production. J Colloid Interface Sci, 2018, 525, 136 doi: 10.1016/j.jcis.2018.04.041
[235]
Yao L, Guijarro N, Boudoire F, et al. Establishing stability in organic semiconductor photocathodes for solar hydrogen production. J Am Chem Soc, 2020, 142, 7795 doi: 10.1021/jacs.0c00126
[236]
Weingarten A S, Kazantsev R V, Palmer L C, et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J Am Chem Soc, 2015, 137, 15241 doi: 10.1021/jacs.5b10027
[237]
Kazantsev R V, Dannenhoffer A J, Weingarten A S, et al. Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J Am Chem Soc, 2017, 139, 6120 doi: 10.1021/jacs.6b13156
[238]
Kazantsev R V, Dannenhoffer A J, Aytun T, et al. Molecular control of internal crystallization and photocatalytic function in supramolecular nanostructures. Chem, 2018, 4, 1596 doi: 10.1016/j.chempr.2018.04.002
[239]
Weingarten A S, Dannenhoffer A J, Kazantsev R V, et al. Chromophore dipole directs morphology and photocatalytic hydrogen generation. J Am Chem Soc, 2018, 140, 4965 doi: 10.1021/jacs.7b12641
[240]
Sai H, Erbas A, Dannenhoffer A, et al. Chromophore amphiphile-polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production. J Mater Chem A, 2020, 8, 158 doi: 10.1039/C9TA08974H
[241]
Dumele O, Chen J H, Passarelli J V, et al. Supramolecular energy materials. Adv Mater, 2020, 32, 1907247 doi: 10.1002/adma.201907247
[242]
Prier C K, Rankic D A, MacMillan D W C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem Rev, 2013, 113, 5322 doi: 10.1021/cr300503r
[243]
Anastas P T, Warner J. Green chemistry: Theory and practice. Oxford Univ Press, 1998
[244]
Zeman C J IV, Kim S, Zhang F, et al. Direct observation of the reduction of aryl halides by a photoexcited perylene diimide radical anion. J Am Chem Soc, 2020, 142, 2204 doi: 10.1021/jacs.9b13027
[245]
Ghosh I. Excited radical anions and excited anions in visible light photoredox catalysis. Phys Sci Rev, 2019, 4, 20170185 doi: 10.1515/psr-2017-0185
[246]
Shang J T, Tang H Y, Ji H W, et al. Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chin J Catal, 2017, 38, 2094 doi: 10.1016/S1872-2067(17)62960-7
[247]
Wang L W, Zhang X, Yu X, et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv Mater, 2019, 31, 1901965 doi: 10.1002/adma.201901965
[248]
Yang Z, Chen X Y. Semiconducting perylene diimide nanostructure: Multifunctional phototheranostic nanoplatform. Acc Chem Res, 2019, 52, 1245 doi: 10.1021/acs.accounts.9b00064
[249]
Hu X M, Lu F, Chen L, et al. Perylene diimide-grafted polymeric nanoparticles chelated with Gd3+ for photoacoustic/T1-weighted magnetic resonance imaging-guided photothermal therapy. ACS Appl Mater Interfaces, 2017, 9, 30458 doi: 10.1021/acsami.7b09633
[250]
Tang W, Yang Z, Wang S, et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano, 2018, 12, 2610 doi: 10.1021/acsnano.7b08628
[251]
Yang Z, Tian R, Wu J J, et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging. ACS Nano, 2017, 11, 4247 doi: 10.1021/acsnano.7b01261
[252]
Fan Q L, Cheng K, Yang Z, et al. Photoacoustic imaging: Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv Mater, 2015, 27, 774 doi: 10.1002/adma.201570028
[253]
Lü B, Chen Y F, Li P Y, et al. Stable radical anions generated from a porous perylenediimide metal-organic framework for boosting near-infrared photothermal conversion. Nat Commun, 2019, 10, 767 doi: 10.1038/s41467-019-08434-4
[254]
Englman R, Jortner J. The energy gap law for radiationless transitions in large molecules. Mol Phys, 1970, 18, 145 doi: 10.1080/00268977000100171
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4330 Times PDF downloads: 220 Times Cited by: 0 Times

    History

    Received: 31 May 2020 Revised: 12 June 2020 Online: Accepted Manuscript: 04 August 2020Uncorrected proof: 07 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Weiqin Wei, Shuxin Ouyang, Tierui Zhang. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. Journal of Semiconductors, 2020, 41(9): 091708. doi: 10.1088/1674-4926/41/9/091708 W Q Wei, S X O yang, T R Zhang, Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. J. Semicond., 2020, 41(9): 091708. doi: 10.1088/1674-4926/41/9/091708.Export: BibTex EndNote
      Citation:
      Weiqin Wei, Shuxin Ouyang, Tierui Zhang. Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. Journal of Semiconductors, 2020, 41(9): 091708. doi: 10.1088/1674-4926/41/9/091708

      W Q Wei, S X O yang, T R Zhang, Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications[J]. J. Semicond., 2020, 41(9): 091708. doi: 10.1088/1674-4926/41/9/091708.
      Export: BibTex EndNote

      Perylene diimide self-assembly: From electronic structural modulation to photocatalytic applications

      doi: 10.1088/1674-4926/41/9/091708
      More Information
      • Corresponding author: Email: oysx@mail.ccnu.edu.cn
      • Received Date: 2020-05-31
      • Revised Date: 2020-06-12
      • Published Date: 2020-09-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return