SEMICONDUCTOR DEVICES

Enhancement of solar cells parameters by periodic nanocylinders

Najdia Benaziez1, Abdelhamid Ounissi2 and Safia Benaziez1

+ Author Affiliations

 Corresponding author: Najdia Benaziez, Email: nedjia.benaziez@gmail.com

PDF

Abstract: Optical absorption in thin-film solar cells can be improved by using surface plasmons for guiding and confining the light on the nanoscale. We report theoretical and simulation studies of a-Si thin-film solar cells with silver nanocylinders on the surface. We found that surface plasmons increased the cells' spectral response over almost the entire studied solar spectrum. In the ultraviolet range and at wavelengths close to the Si band gap we observed a significant enhancement of the absorption for both thin-film and wafer-based structures. We also performed optimization studies of particle size, inter-particle distance, and dielectric environment, for obtaining maximal absorption within the substrate. A blue-shift of the resonance wavelength with increasing inter-particle distance was observed in the visible range. Cell performance improved at optimal spacing, which strongly depended on the nanoparticle size. Increasing the nanocylinder size was accompanied by the widening of the plasmon resonance band and a red-shift of the plasmon resonance peaks. A weak red-shift and plasmon peak enhancement were observed in the reflectance curve with increasing refractive index of the dielectric spacer.

Key words: plasmonic solar cellenhancement of absorptionnanostructurestransfer matrix methodMaxwell-Garnett's model



[1]
Kacha K, Djeffal F, Ferhati H, et al. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. Journal of Semiconductors, 2015, 36(6):064004
[2]
Qu Xiaosheng, Bao Hongyin, Nikjalal H S, et al. An InGaAs graded buffer layer in solar cells. Journal of Semiconductors, 2014, 35(1):014011
[3]
Gorji N E. Deposition and doping of CdS/CdTe thin film solar cells. Journal of Semiconductors, 2015, 36(5):054001
[4]
Green M A. Third generation photovoltaics. Berlin:Springer, 2003
[5]
Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express, 2009, 17(12):10195
[6]
Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16:21793
[7]
Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93:191113
[8]
Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101:093105
[9]
Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys, 2009, 105:114310
[10]
Grady N K, Halas N J, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett, 2004, 399:167
[11]
Lahmani M, Dupas C, Houdy P. Nouvelle Édition. Berlin, 2006
[12]
Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photonics Rev, 2008, 2(3):136
[13]
Bruna M, Borini S. Optical constants of graphene layers in the visible range. Appl Phys Lett, 2009, 94(3):031901
[14]
Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express, 2010, 18(14):14395
[15]
Yamamoto M. Surface plasmon resonance (SPR) theory:tutorial. Rev Polarogr (Jpn), 2002, 48(3):209
[16]
Maharana P K, Jha R, Palei S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensor Actuat B Chem, 2014, 190:494
[17]
Palik E D. Handbook of optical constants of solids. London:Academic Press Inc, 1985
[18]
Silva A O, Costa J C W A. Retrieving the effective permittivity of an optical metamaterial structured with metallic cylindrical nanorods-an analytical approach based on the calculation of the depolarization field. J Microwaves Optoelectron Electromagn Appl, 2014, 13(SI1):10
[19]
Peiponen K E, Saarinen J J, Asakura T. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles. Opt Rev, 2001, 8(1):9
[20]
Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chem Rev, 2007, 107:4797
[21]
Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express, 2008, 16(20):15439
[22]
Yaghjian A D. Electric dyadic Green's functions in the source region. Proc IEEE, 1980, 68(2):248
[23]
Malitson I H. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am, 1965, 55:1205
[24]
Kanso M. PhD Thesis. École Polytechnique de l'Université de Nantes, 2008
[25]
Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6:4370
[26]
Hagglund C, Zach M, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett, 2008, 92:013113
[27]
Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett, 2008, 93:121904
[28]
Lim S H, Mar W, Matheu P, et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys, 2007, 101(10):104309
[29]
Beck F J, Verhagen E, Mokkapati S, et al. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express, 2011, 19(2):A146
[30]
Matheu P, Lim S H, Derkacs D, et al. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett, 2008, 93(11):113108
[31]
ShuG W, Liao W C, Hsu C L, et al. Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles. Adv Sci Lett, 2010, 3(4):368
[32]
Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16(26):21793
[33]
Singh Y P. Enhancement in optical absorption of plasmonic solar cells. Open Renew Energ J, 2013, 6(1):21793
[34]
Rockstuhl C R, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. J Appl Phys, 2008, 104:1231021
Fig. 1.  (Color online) Basic solar cell structure studied in the present work.

Fig. 2.  (Color online) Real and imaginary parts of the effective ordinary and extraordinary relative permittivities for the lattice of silver cylindrical nanorods immersed in the Si matrix, calculated from the MG model corrected for spheres and cylinders. Model parameters: a = 0.05 μm, S = 0.4 μm, h = 0.2 μm.

Fig. 3.  Color online) (a) Analytical and numerical results for the reflectance of the solar cell coated with nanoparticles, compared with the original cell. (b) Spectral reflection rate of the a-Si:H photo-active layer and silver nanoparticles (blue lines), as a function of wavelength. (c) Contribution of Ag contact and silver nanoparticles in spectral reflection rate of the cell. (d) Relative external quantum efficiency (EQE) for the solar cell without (black) and with (magenta) the proposed plasmonic design. (e) I-V curves and power densities for the solar cell without (black) and with (blue) the proposed plasmonic design.

Fig. 4.  (Color online) Variation in (a) the absorption enhancement ratio, An, (b) I-V and power densities curves, and (c) solar cell parameters, with nanorod radius, a, for S=0.04 μm and h=0.04 μm.

Fig. 5.  (Color online) (a) Absorption enhancement in the a-Si substrate with cylindrical Ag nanowires with D = 70 nm, at various inter-particle distances, S. (b) Absorption enhancement ratio, An, versus the inter-particle distance, S, for different Ag nanoparticles radius. (c) Solar cell parameters versus the inter-particle distance.

Fig. 6.  (Color online) (a) Reflectance spectra of Ag nanoparticle arrays (a=50 nm, h=400 nm, S=250 nm) with 50 nm ITO, SiO2 and ZnO spacing layers, and (b) I-V curves for ITO, SiO2 and ZnO spacing layers.

Table 1.   Enhancement of device performance due to the presence of Ag cylindrical nanorods.

ParameterJsc(mA/cm2)VOC(V)FFη(%)
With Ag nanorods23.531.1550.832 23.6
Without Ag nanorods22.131.1530.828 21.9
Enhancement (%)6.32 0.170.487.43
DownLoad: CSV
[1]
Kacha K, Djeffal F, Ferhati H, et al. Numerical investigation of a double-junction a:SiGe thin-film solar cell including the multi-trench region. Journal of Semiconductors, 2015, 36(6):064004
[2]
Qu Xiaosheng, Bao Hongyin, Nikjalal H S, et al. An InGaAs graded buffer layer in solar cells. Journal of Semiconductors, 2014, 35(1):014011
[3]
Gorji N E. Deposition and doping of CdS/CdTe thin film solar cells. Journal of Semiconductors, 2015, 36(5):054001
[4]
Green M A. Third generation photovoltaics. Berlin:Springer, 2003
[5]
Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express, 2009, 17(12):10195
[6]
Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16:21793
[7]
Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells. Appl Phys Lett, 2008, 93:191113
[8]
Pillai S, Catchpole K R, Trupke T, et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 2007, 101:093105
[9]
Beck F J, Polman A, Catchpole K R. Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys, 2009, 105:114310
[10]
Grady N K, Halas N J, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett, 2004, 399:167
[11]
Lahmani M, Dupas C, Houdy P. Nouvelle Édition. Berlin, 2006
[12]
Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser Photonics Rev, 2008, 2(3):136
[13]
Bruna M, Borini S. Optical constants of graphene layers in the visible range. Appl Phys Lett, 2009, 94(3):031901
[14]
Wu L, Chu H S, Koh W S, et al. Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express, 2010, 18(14):14395
[15]
Yamamoto M. Surface plasmon resonance (SPR) theory:tutorial. Rev Polarogr (Jpn), 2002, 48(3):209
[16]
Maharana P K, Jha R, Palei S. Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensor Actuat B Chem, 2014, 190:494
[17]
Palik E D. Handbook of optical constants of solids. London:Academic Press Inc, 1985
[18]
Silva A O, Costa J C W A. Retrieving the effective permittivity of an optical metamaterial structured with metallic cylindrical nanorods-an analytical approach based on the calculation of the depolarization field. J Microwaves Optoelectron Electromagn Appl, 2014, 13(SI1):10
[19]
Peiponen K E, Saarinen J J, Asakura T. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles. Opt Rev, 2001, 8(1):9
[20]
Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chem Rev, 2007, 107:4797
[21]
Liu Y, Bartal G, Zhang X. All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region. Opt Express, 2008, 16(20):15439
[22]
Yaghjian A D. Electric dyadic Green's functions in the source region. Proc IEEE, 1980, 68(2):248
[23]
Malitson I H. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am, 1965, 55:1205
[24]
Kanso M. PhD Thesis. École Polytechnique de l'Université de Nantes, 2008
[25]
Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6:4370
[26]
Hagglund C, Zach M, Kasemo B. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett, 2008, 92:013113
[27]
Nakayama K, Tanabe K, Atwater H A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett, 2008, 93:121904
[28]
Lim S H, Mar W, Matheu P, et al. Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys, 2007, 101(10):104309
[29]
Beck F J, Verhagen E, Mokkapati S, et al. Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt Express, 2011, 19(2):A146
[30]
Matheu P, Lim S H, Derkacs D, et al. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl Phys Lett, 2008, 93(11):113108
[31]
ShuG W, Liao W C, Hsu C L, et al. Enhanced conversion efficiency of GaAs solar cells using Ag nanoparticles. Adv Sci Lett, 2010, 3(4):368
[32]
Catchpole K R, Polman A. Plasmonic solar cells. Opt Express, 2008, 16(26):21793
[33]
Singh Y P. Enhancement in optical absorption of plasmonic solar cells. Open Renew Energ J, 2013, 6(1):21793
[34]
Rockstuhl C R, Fahr S, Lederer F. Absorption enhancement in solar cells by localized plasmon polaritons. J Appl Phys, 2008, 104:1231021
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2818 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 14 October 2015 Revised: 17 December 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Najdia Benaziez, Abdelhamid Ounissi, Safia Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. Journal of Semiconductors, 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004 N Benaziez, A Ounissi, S Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. J. Semicond., 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004.Export: BibTex EndNote
      Citation:
      Najdia Benaziez, Abdelhamid Ounissi, Safia Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. Journal of Semiconductors, 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004

      N Benaziez, A Ounissi, S Benaziez. Enhancement of solar cells parameters by periodic nanocylinders[J]. J. Semicond., 2016, 37(6): 064004. doi: 10.1088/1674-4926/37/6/064004.
      Export: BibTex EndNote

      Enhancement of solar cells parameters by periodic nanocylinders

      doi: 10.1088/1674-4926/37/6/064004
      More Information
      • Corresponding author: Email: nedjia.benaziez@gmail.com
      • Received Date: 2015-10-14
      • Revised Date: 2015-12-17
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return