SEMICONDUCTOR MATERIALS

The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method

Achour Rahal1, 2, Said Benramache1, 3 and Boubaker Benhaoua1

+ Author Affiliations

 Corresponding author: Said Benramache, Email: saidzno2006@gmail.com

PDF

Abstract: This paper reports on the effects of film thickness and doping content on the optical and electrical properties of fluorine-doped tin oxide. Tin (Ⅱ) chloride dehydrate, ammonium fluoride dehydrate, ethanol and HCl were used as the starting materials, dopant source, solvent and stabilizer, respectively. The doped films were deposited on a glass substrate at different concentrations varying between 0 and 5 wt% using an ultrasonic spray technique. The SnO2:F thin films were deposited at a 350℃ pending time (5, 15, 60 and 90 s). The average transmission was about 80%, and the films were thus transparent in the visible region. The optical energy gap of the doped films with 2.5 wt% F was found to increase from 3.47 to 3.89 eV with increasing film thickness, and increased after doping at 5 wt%. The decrease in the Urbach energy of the SnO2:F thin films indicated a decrease in the defects. The increase in the electrical conductivity of the films reached maximum values of 278.9 and 281.9 (Ω· cm)-1 for 2.5 and 5 wt% F, respectively, indicating that the films exhibited an n-type semiconducting nature. A systematic study on the influence of film thickness and doping content on the properties of SnO2:F thin films deposited by ultrasonic spray was reported.

Key words: SnO2fluoridethin filmfilm thicknessTCOultrasonic spray technique



[1]
Gui T, Hao L, Wang J, et al. Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin Opt Lett, 2010, 8(s1):134 doi: 10.3788/COL
[2]
Kwon J H, Choi Y H, Kim D H, et al. Orientation relationship of polycrystalline Pd-doped SnO2 thin film deposits on sapphire substrates. Thin Solid Films, 2008, 517(2):550 doi: 10.1016/j.tsf.2008.06.074
[3]
Jiménez V M, Espinós J P, Gonzaález-Elipe A R. Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials. Sensors and Actuators B, 1999, 61(1-3):23 doi: 10.1016/S0925-4005(99)00275-0
[4]
Murakami K, Nakajima K, Kaneko S. Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 2007, 515(24):8632 doi: 10.1016/j.tsf.2007.03.128
[5]
Ghimbeu C M, Landschoot R C, Schoonman J, et al. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). Journal of the European Ceramic Society, 2007, 27(1):207 doi: 10.1016/j.jeurceramsoc.2006.05.092
[6]
Chung J H, Choe Y S, Kim D S. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films. Thin Solid Films, 1999, 349(1/2):126 doi: 10.1088/0268-1242/28/8/085014
[7]
Ohgaki T, Matsuokaa R, Watanabe K, et al. Synthesizing SnO2 thin films and characterizing sensing performances. Sensors and Actuators B, 2010, 150(1):99 doi: 10.1016/j.snb.2010.07.036
[8]
Leo G, Rella R, Siciliano P. Sprayed SnO2 thin films for NO2 sensors. Sensors and Actuators B, 1999, 58(1-3):370 doi: 10.1016/S0925-4005(99)00098-2
[9]
Yang T, Qin X, Wang H, et al. Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films, 2010, 518(19):5542 doi: 10.1016/j.tsf.2010.04.063
[10]
Ajili M, Castagné M, Turki N K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices and Microstructures, 2013, 53(1):213 http://ieeexplore.ieee.org/abstract/document/7449374/?section=abstract
[11]
Benramache S, Benhaoua B, Chabane F. Effect of substrate temperature on the stability of transparent conducting cobalt doped ZnO thin films. Journal of Semiconductors, 2012, 33(9):093001 doi: 10.1088/1674-4926/33/9/093001
[12]
Benramache S, Benhaoua B, Chabane F, et al. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. Journal of Semiconductors, 2013, 34(2):023001 doi: 10.1088/1674-4926/34/2/023001
[13]
Muruganantham G, Ravichandran K, Saravanakumar K, et al. Effect of solvent volume on the physical properties of undoped and fluorine doped tin oxide films deposited using a low-cost spray technique. Superlattices and Microstructures, 2011, 50(6):722 doi: 10.1016/j.spmi.2011.09.014
[14]
Mosbah A, Aida M S. Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films. Journal of Alloys and Compounds, 2012, 515(2):149
[15]
Abed S, Aida M S, Bouchouit K, et al. Non-linear optical and electrical properties of ZnO doped Ni thin films obtained using spray ultrasonic technique. Opt Mater, 2011, 33(6):968 doi: 10.1016/j.optmat.2011.01.018
[16]
Cakmak H M, Cetinkara H A, Kahraman S, et al. Effects of thermal oxidation temperature on vacuum evaporated tin dioxide film. Superlattices and Microstructures, 2012, 51(3):421 doi: 10.1016/j.spmi.2012.01.006
[17]
Chakrabortya A, Mondala T, Berab S K, et al. Effects of aluminum and indium incorporation on the structural and optical properties of ZnO thin films synthesized by spray pyrolysis technique. Mater Chem Phys, 2008, 112(2):162 doi: 10.1007/s11051-011-0578-6
[18]
Benramache S, Benhaoua B, Khechai N, et al. Elaboration and characterisation of ZnO thin films. Matériaux & Techniques, 2012, 100(6/7):573 http://www.wenkuxiazai.com/doc/2e70a31d10a6f524ccbf85a5.html
[19]
Benramache S, Benhaoua B, Chabane F, et al. A comparative study on the nanocrystalline ZnO thin films prepared by ultrasonic spray and sol-gel method. Optik. http://dx.doi.org/10.1016/j.ijleo.2012.10.001
[20]
Benramache S, Benhaoua B. Influence of substrate temperature and cobalt concentration on structural and optical properties of ZnO thin films prepared by ultrasonic spray technique. Superlattices and Microstructures, 2012, 52(6):807
[21]
Ilican S, Caglar M, Caglar Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Materials Science-Poland, 2007, 25(3):709 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.2536
[22]
Rahal A, Benramache S, Benhaoua B. Preparation of n-type semiconductor SnO2 thin films. Journal of Semiconductors, 2013, 34(8):083002 doi: 10.1088/1674-4926/34/8/083002
Fig. 1.  The transmission spectra of SnO$_{2}$:F thin films at different doping levels with 513 nm.

Fig. 2.  The transmission spectra of SnO$_{2}$:F thin films as a function of film thickness with 2.5 wt%.

Fig. 3.  The typical variation in $(\alpha h \nu)^2$ drawn as a function of the photon energy $h\nu $ of SnO$_{2}$:F films with film thickness.

Fig. 4.  The variation in the band gap energy $E_{\rm g}$ and Urbach energy $E_{\rm u}$ of SnO$_{2}$:F thin films as a function of the (a) doping level, and (b) film thickness.

Fig. 5.  The variation in the refractive index of SnO$_{2}$:F thin films as a function of band gap energy with doping level and film thickness.

Fig. 6.  The variation in the electrical conductivity of SnO$_{2}$:F thin films as a function of the (a) doping level, and (b) film thickness.

Table 1.   Transmission $T$, band gap energy $E_{\rm g}$, Urbach energy $E_{\rm u}$, electrical conductivity $\sigma$ and refractive indices $n$ at 25 for SnO$_{2}$:F thin films measured at different film thicknesses.

[1]
Gui T, Hao L, Wang J, et al. Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin Opt Lett, 2010, 8(s1):134 doi: 10.3788/COL
[2]
Kwon J H, Choi Y H, Kim D H, et al. Orientation relationship of polycrystalline Pd-doped SnO2 thin film deposits on sapphire substrates. Thin Solid Films, 2008, 517(2):550 doi: 10.1016/j.tsf.2008.06.074
[3]
Jiménez V M, Espinós J P, Gonzaález-Elipe A R. Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials. Sensors and Actuators B, 1999, 61(1-3):23 doi: 10.1016/S0925-4005(99)00275-0
[4]
Murakami K, Nakajima K, Kaneko S. Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 2007, 515(24):8632 doi: 10.1016/j.tsf.2007.03.128
[5]
Ghimbeu C M, Landschoot R C, Schoonman J, et al. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). Journal of the European Ceramic Society, 2007, 27(1):207 doi: 10.1016/j.jeurceramsoc.2006.05.092
[6]
Chung J H, Choe Y S, Kim D S. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films. Thin Solid Films, 1999, 349(1/2):126 doi: 10.1088/0268-1242/28/8/085014
[7]
Ohgaki T, Matsuokaa R, Watanabe K, et al. Synthesizing SnO2 thin films and characterizing sensing performances. Sensors and Actuators B, 2010, 150(1):99 doi: 10.1016/j.snb.2010.07.036
[8]
Leo G, Rella R, Siciliano P. Sprayed SnO2 thin films for NO2 sensors. Sensors and Actuators B, 1999, 58(1-3):370 doi: 10.1016/S0925-4005(99)00098-2
[9]
Yang T, Qin X, Wang H, et al. Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films, 2010, 518(19):5542 doi: 10.1016/j.tsf.2010.04.063
[10]
Ajili M, Castagné M, Turki N K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices and Microstructures, 2013, 53(1):213 http://ieeexplore.ieee.org/abstract/document/7449374/?section=abstract
[11]
Benramache S, Benhaoua B, Chabane F. Effect of substrate temperature on the stability of transparent conducting cobalt doped ZnO thin films. Journal of Semiconductors, 2012, 33(9):093001 doi: 10.1088/1674-4926/33/9/093001
[12]
Benramache S, Benhaoua B, Chabane F, et al. Influence of growth time on crystalline structure, conductivity and optical properties of ZnO thin films. Journal of Semiconductors, 2013, 34(2):023001 doi: 10.1088/1674-4926/34/2/023001
[13]
Muruganantham G, Ravichandran K, Saravanakumar K, et al. Effect of solvent volume on the physical properties of undoped and fluorine doped tin oxide films deposited using a low-cost spray technique. Superlattices and Microstructures, 2011, 50(6):722 doi: 10.1016/j.spmi.2011.09.014
[14]
Mosbah A, Aida M S. Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films. Journal of Alloys and Compounds, 2012, 515(2):149
[15]
Abed S, Aida M S, Bouchouit K, et al. Non-linear optical and electrical properties of ZnO doped Ni thin films obtained using spray ultrasonic technique. Opt Mater, 2011, 33(6):968 doi: 10.1016/j.optmat.2011.01.018
[16]
Cakmak H M, Cetinkara H A, Kahraman S, et al. Effects of thermal oxidation temperature on vacuum evaporated tin dioxide film. Superlattices and Microstructures, 2012, 51(3):421 doi: 10.1016/j.spmi.2012.01.006
[17]
Chakrabortya A, Mondala T, Berab S K, et al. Effects of aluminum and indium incorporation on the structural and optical properties of ZnO thin films synthesized by spray pyrolysis technique. Mater Chem Phys, 2008, 112(2):162 doi: 10.1007/s11051-011-0578-6
[18]
Benramache S, Benhaoua B, Khechai N, et al. Elaboration and characterisation of ZnO thin films. Matériaux & Techniques, 2012, 100(6/7):573 http://www.wenkuxiazai.com/doc/2e70a31d10a6f524ccbf85a5.html
[19]
Benramache S, Benhaoua B, Chabane F, et al. A comparative study on the nanocrystalline ZnO thin films prepared by ultrasonic spray and sol-gel method. Optik. http://dx.doi.org/10.1016/j.ijleo.2012.10.001
[20]
Benramache S, Benhaoua B. Influence of substrate temperature and cobalt concentration on structural and optical properties of ZnO thin films prepared by ultrasonic spray technique. Superlattices and Microstructures, 2012, 52(6):807
[21]
Ilican S, Caglar M, Caglar Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Materials Science-Poland, 2007, 25(3):709 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.501.2536
[22]
Rahal A, Benramache S, Benhaoua B. Preparation of n-type semiconductor SnO2 thin films. Journal of Semiconductors, 2013, 34(8):083002 doi: 10.1088/1674-4926/34/8/083002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3315 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 19 February 2013 Revised: 21 March 2013 Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method[J]. Journal of Semiconductors, 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003 A Rahal, S Benramache, B Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method[J]. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003.Export: BibTex EndNote
      Citation:
      Achour Rahal, Said Benramache, Boubaker Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method[J]. Journal of Semiconductors, 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003

      A Rahal, S Benramache, B Benhaoua. The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method[J]. J. Semicond., 2013, 34(9): 093003. doi: 10.1088/1674-4926/34/9/093003.
      Export: BibTex EndNote

      The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method

      doi: 10.1088/1674-4926/34/9/093003
      More Information
      • Corresponding author: Said Benramache, Email: saidzno2006@gmail.com
      • Received Date: 2013-02-19
      • Revised Date: 2013-03-21
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return