SEMICONDUCTOR DEVICES

An accurate simulation model for single-photon avalanche diodes including important statistical effects

Qiuyang He1, Yue Xu2, and Feifei Zhao2

+ Author Affiliations

 Corresponding author: Xu Yue, yuex@njupt.edu.cn

PDF

Abstract: An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.

Key words: single-photon avalanche diodessimulation modelVerilog-Aafter-pulsingdark-counting



[1]
Guerrieri F, Tisa S, Tosi A, et al. Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics Journal, 2010, 2(5):759 doi: 10.1109/JPHOT.2010.2066554
[2]
Rech I, Cova S, Restelli A, et al. Microchips and single-photon avalanche diodes for DNA separation with high sensitivity. Electrophoresis, 2006, 27(19):3797 doi: 10.1002/(ISSN)1522-2683
[3]
Felekyan S, Kühnemuth R, Kudryavtsev V, et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Review of Scientific Instruments, 2005, 76(8):083104 doi: 10.1063/1.1946088
[4]
Squillante M R, Gordon J S. Recent advances in avalanche photodiode technology. SPIE, 2003, 5071:405 http://ieeexplore.ieee.org/document/4137571/
[5]
Faramarzpour N, Deen M J, Shirani S, et al. Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology. IEEE Trans Electron Devices, 2008, 55(3):760 doi: 10.1109/TED.2007.914839
[6]
Richardson J A, Webster E A G, Grant L A, et al. Scaleable single-photon avalanche diode structures in nanometer CMOS technology. IEEE Trans Electron Devices, 2011, 58(7):2028 doi: 10.1109/TED.2011.2141138
[7]
Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt, 1996, 35(12):1956 doi: 10.1364/AO.35.001956
[8]
Mita R, Palumbo G. High-speed and compact quenching circuit for single-photon avalanche diodes. IEEE Trans Instrumentation and Measurement, 2008, 57(3):543 doi: 10.1109/TIM.2007.911691
[9]
Marwick M A, Andreou A G. Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18μm 1.8 V CMOS process. Electron Lett, 2008, 44(10):643 doi: 10.1049/el:20080673
[10]
Cova S, Longoni A, Andreoni A. Towards pocosecond resolution with single-photon avalanche diodes. Review of Scientific Instruments, 1981, 52(3):408 doi: 10.1063/1.1136594
[11]
Zappa F, Tosi A, Mora A D, et al. Spice modeling of single photon avalanche diodes. Sensors and Actuators A:Physical, 2009, 153(2):197 doi: 10.1016/j.sna.2009.05.007
[12]
Mora A D, Tosi A, Tisa S, et al. Single-photon avalanche diode model for circuit simulations. IEEE Photonics Technol Lett, 2007, 19(23):1922 doi: 10.1109/LPT.2007.908768
[13]
Mita R, Palumbo G, Fallica P G. Accurate model for single-photon avalanche diodes. Circuits, IET Devices & Systems, 2008, 2(2):207 http://ieeexplore.ieee.org/document/4490223/?reload=true&arnumber=4490223
[14]
Kang Y, Lu H X, Lo Y H. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection. Appl Phys Lett, 2003, 83(14):2955 doi: 10.1063/1.1616666
[15]
Ramirez D, Hayat M, Karve G, et al. Detection efficiencies and generalized breakdown probabilities for nano second-gated near infrared single-photon avalanche photodiodes. IEEE J Quantum Electron, 2006, 42(1/2):137 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-19-22608#figanchor6
[16]
Ramirez D A, Hayat M A, Itzler M A. Dependence of the performance of single photon avalanche diodes on the multiplication region width. IEEE J Quantum Electron, 2008, 44(11/12):1188 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004675825
[17]
Itzler M A, Ben-Michael R, Hsu C F, et al. Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications. Journal of Modern Optics, 2007, 54(2/3):283 doi: 10.1080/09500340600792291?journalCode=tmop20
[18]
Finkelstein H, Hsu M J, Esener S C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett, 2006, 27(11):887 doi: 10.1109/LED.2006.883560
[19]
Ripamonti G, Zappa F, Cova S. Effects of trap levels in single-photon optical time-domain reflectometry:evaluation and correction. IEEE J Lightwave Technol, 1992, 10(10):1398 doi: 10.1109/50.166782
Fig. 1.  Typical CMOS SPAD structure.

Fig. 2.  Traditional SPAD model. (a) SPAD device and (b) basic model.

Fig. 3.  Improved SPAD simulation model.

Fig. 4.  Piecewise linear voltage–current characteristic of the SPAD.

Fig. 5.  Comparison between the simulated I–V curve (line) and the measured results (squares) for three different working modes.

Fig. 6.  Passive quenching circuit applied in SPAD model simulation. The SPAD device substrate is floating.

Fig. 7.  Comparisons between the SPAD model simulations and the measurements of the avalanche voltage pulse at two excess voltage biases.

Fig. 8.  SPAD transient simulation characteristics of cathode voltage versus the simulation time in the passive quenching circuit. (a) Input photon signal. (b) After-pulsing and dark-counting occurrences.

Fig. 9.  SPAD primary dark-counting simulation waveform versus the simulation time in the passive quenching circuit.

Fig. 10.  SPAD simulation of the primary dark-count rate versus different temperature values under the different excess voltages in the passive quenching circuit.

Table 1.   Key model parameters[11, 12].

[1]
Guerrieri F, Tisa S, Tosi A, et al. Two-dimensional SPAD imaging camera for photon counting. IEEE Photonics Journal, 2010, 2(5):759 doi: 10.1109/JPHOT.2010.2066554
[2]
Rech I, Cova S, Restelli A, et al. Microchips and single-photon avalanche diodes for DNA separation with high sensitivity. Electrophoresis, 2006, 27(19):3797 doi: 10.1002/(ISSN)1522-2683
[3]
Felekyan S, Kühnemuth R, Kudryavtsev V, et al. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Review of Scientific Instruments, 2005, 76(8):083104 doi: 10.1063/1.1946088
[4]
Squillante M R, Gordon J S. Recent advances in avalanche photodiode technology. SPIE, 2003, 5071:405 http://ieeexplore.ieee.org/document/4137571/
[5]
Faramarzpour N, Deen M J, Shirani S, et al. Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology. IEEE Trans Electron Devices, 2008, 55(3):760 doi: 10.1109/TED.2007.914839
[6]
Richardson J A, Webster E A G, Grant L A, et al. Scaleable single-photon avalanche diode structures in nanometer CMOS technology. IEEE Trans Electron Devices, 2011, 58(7):2028 doi: 10.1109/TED.2011.2141138
[7]
Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection. Appl Opt, 1996, 35(12):1956 doi: 10.1364/AO.35.001956
[8]
Mita R, Palumbo G. High-speed and compact quenching circuit for single-photon avalanche diodes. IEEE Trans Instrumentation and Measurement, 2008, 57(3):543 doi: 10.1109/TIM.2007.911691
[9]
Marwick M A, Andreou A G. Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18μm 1.8 V CMOS process. Electron Lett, 2008, 44(10):643 doi: 10.1049/el:20080673
[10]
Cova S, Longoni A, Andreoni A. Towards pocosecond resolution with single-photon avalanche diodes. Review of Scientific Instruments, 1981, 52(3):408 doi: 10.1063/1.1136594
[11]
Zappa F, Tosi A, Mora A D, et al. Spice modeling of single photon avalanche diodes. Sensors and Actuators A:Physical, 2009, 153(2):197 doi: 10.1016/j.sna.2009.05.007
[12]
Mora A D, Tosi A, Tisa S, et al. Single-photon avalanche diode model for circuit simulations. IEEE Photonics Technol Lett, 2007, 19(23):1922 doi: 10.1109/LPT.2007.908768
[13]
Mita R, Palumbo G, Fallica P G. Accurate model for single-photon avalanche diodes. Circuits, IET Devices & Systems, 2008, 2(2):207 http://ieeexplore.ieee.org/document/4490223/?reload=true&arnumber=4490223
[14]
Kang Y, Lu H X, Lo Y H. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection. Appl Phys Lett, 2003, 83(14):2955 doi: 10.1063/1.1616666
[15]
Ramirez D, Hayat M, Karve G, et al. Detection efficiencies and generalized breakdown probabilities for nano second-gated near infrared single-photon avalanche photodiodes. IEEE J Quantum Electron, 2006, 42(1/2):137 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-19-22608#figanchor6
[16]
Ramirez D A, Hayat M A, Itzler M A. Dependence of the performance of single photon avalanche diodes on the multiplication region width. IEEE J Quantum Electron, 2008, 44(11/12):1188 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000004675825
[17]
Itzler M A, Ben-Michael R, Hsu C F, et al. Single photon avalanche diodes (SPADs) for 1.5μm photon counting applications. Journal of Modern Optics, 2007, 54(2/3):283 doi: 10.1080/09500340600792291?journalCode=tmop20
[18]
Finkelstein H, Hsu M J, Esener S C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett, 2006, 27(11):887 doi: 10.1109/LED.2006.883560
[19]
Ripamonti G, Zappa F, Cova S. Effects of trap levels in single-photon optical time-domain reflectometry:evaluation and correction. IEEE J Lightwave Technol, 1992, 10(10):1398 doi: 10.1109/50.166782
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4136 Times PDF downloads: 112 Times Cited by: 0 Times

    History

    Received: 11 March 2013 Revised: 09 April 2013 Online: Published: 01 October 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qiuyang He, Yue Xu, Feifei Zhao. An accurate simulation model for single-photon avalanche diodes including important statistical effects[J]. Journal of Semiconductors, 2013, 34(10): 104007. doi: 10.1088/1674-4926/34/10/104007 Q Y He, Y Xu, F F Zhao. An accurate simulation model for single-photon avalanche diodes including important statistical effects[J]. J. Semicond., 2013, 34(10): 104007. doi: 10.1088/1674-4926/34/10/104007.Export: BibTex EndNote
      Citation:
      Qiuyang He, Yue Xu, Feifei Zhao. An accurate simulation model for single-photon avalanche diodes including important statistical effects[J]. Journal of Semiconductors, 2013, 34(10): 104007. doi: 10.1088/1674-4926/34/10/104007

      Q Y He, Y Xu, F F Zhao. An accurate simulation model for single-photon avalanche diodes including important statistical effects[J]. J. Semicond., 2013, 34(10): 104007. doi: 10.1088/1674-4926/34/10/104007.
      Export: BibTex EndNote

      An accurate simulation model for single-photon avalanche diodes including important statistical effects

      doi: 10.1088/1674-4926/34/10/104007
      Funds:

      Project supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20131379)

      the Natural Science Foundation of Jiangsu Province, China BK20131379

      More Information
      • Corresponding author: Xu Yue, yuex@njupt.edu.cn
      • Received Date: 2013-03-11
      • Revised Date: 2013-04-09
      • Published Date: 2013-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return