SEMICONDUCTOR DEVICES

Improving the peak current density of resonant tunneling diode based on InP substrate

Zhiqiang Li, Hailin Tang, Haitao Liu, Yi Liang, Qian Li, Ning An, Jianping Zeng, Wenjie Wang and Yongzhong Xiong

+ Author Affiliations

 Corresponding author: Zhiqiang Li Email:chiniao1203@163.com; Yongzhong Xiong Email:xyz1289@126.com

PDF

Abstract: Resonant tunneling diodes (RTD) have the potential for compact and coherent terahertz (THz) sources operating at room temperature, but their low output power severely restricts their application in THz frequency range. In this paper, two methods are adopted to increase the peak current of RTD for enhancing its output power. First, different metal contact systems (including Pt/Ti/Pt/Au and AuGe/Ni/Au) for RTD contact are introduced, and a higher current of RTD with Pt/Ti/Pt/Au contact demonstrates the superior contact characteristic of Pt/Ti/Pt/Au contact system. Second, the double barrier structure (DBS) of RTD is well designed to further improve the characteristic of RTD, and a high peak current of 154 kA/cm2 is achieved at room temperature. The improved peak current is very beneficial for increasing the output power of RTD oscillator.

Key words: resonant tunneling diodeterahertz sourcesohmic contactoutput power



[1]
Tonouchi M. Cutting-edge terahertz technology. Nat Photonics, 2007, 1(2):97 doi: 10.1038/nphoton.2007.3
[2]
Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. J Infrared, Millimeter, Terahertz Waves, 2011, 32(2):143 doi: 10.1007/s10762-010-9758-1
[3]
Horiuchi N. Terahertz technology:endless applications. Nat Photonics, 2010, 4(3):140 doi: 10.1038/nphoton.2010.16
[4]
[5]
Ma Y, Lu Z, Chen Q, et al. Recent advances of terahertz imaging technologies. Recent Patents on Signal Processing, 2012, 2(1):4 doi: 10.2174/1877612411202010004
[6]
Panda P, Dash G. Prospects of gallium nitride double drift region mixed tunneling avalanche transit time diodes for operation in F, Y and THz bands. J Semicond, 2016, 37(5):054001 doi: 10.1088/1674-4926/37/5/054001
[7]
Asada M, Suzuki S, Kishimoto N. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn J Appl Phys, 2008, 47(6R):4375 doi: 10.1143/JJAP.47.4375/pdf
[8]
Orihashi N, Suzuki S, Asada M. One THz harmonic oscillation of resonant tunneling diodes. Appl Phys Lett, 2005, 87(23):233501 doi: 10.1063/1.2139850
[9]
Suzuki S, Teranishi A, Hinata K, et al. Fundamental oscillation of up to 831 GHz in GaInAs/AlAs resonant tunneling diode. Appl Phys Express, 2009, 2(5):054501 https://www.researchgate.net/publication/224484425_Fundamental_Oscillation_of_up_to_831_GHz_in_GaInAsAlAs_Resonant_Tunneling_Diode
[10]
Maekawa T, Kanaya H, Suzuki S, et al. Frequency increase in terahertz oscillation of resonant tunnelling diode up to 1.55 THz by reduced slot-antenna length. Electron Lett, 2014, 50(17):1214 doi: 10.1049/el.2014.2362
[11]
Chowdhury S, Chattaraj S, Biswas D. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate. J Semicond, 2015, 36(4):044001 doi: 10.1088/1674-4926/36/4/044001
[12]
Feiginov M, Sydlo C, Cojocari O, et al. Resonant-tunnellingdiode oscillators operating at frequencies above 1.1 THz. Appl Phys Lett, 2011, 99(23):233506 doi: 10.1063/1.3667191
[13]
Koyama Y, Sekiguchi R, Ouchi T. Oscillations up to 1.40 THz from resonant-tunneling-diode-based oscillators with integrated patch antennas. Appl Phys Express, 2013, 6(6):064102 doi: 10.7567/APEX.6.064102
[14]
Maekawa T, Kanaya H, Suzuki S, et al. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl Phys Express, 2016, 9(2):024101 doi: 10.7567/APEX.9.024101
[15]
Kanaya H, Shibayama H, Sogabe R, et al. Fundamental oscillation up to 1.31 THz in resonant tunneling diodes with thin well and barriers. Appl Phys Express, 2012, 5(12):124101 doi: 10.1143/APEX.5.124101
[16]
Kim C, Brandli A. High-frequency high-power operation of tunnel diodes. IRE Trans Circuit Theory, 1961, 8(4):416 doi: 10.1109/TCT.1961.1086849
[17]
Song H J, Nagatsuma T. Handbook of terahertz technologies:devices and applications. Singapore:Pan Stanford Publishing, 2015
[18]
Li Z, An N, Zeng J, et al. Studying on source/drain contact resistance reduction for InP-based HEMT. Microwave Opt Technol Lett, 2016, 58(1):217 doi: 10.1002/mop.29531
[19]
Chor E F, Zhang D, Gong H, et al. Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. J Appl Phys, 2000, 87(5):2437 doi: 10.1063/1.372198
[20]
Prost W, Khorenko V, Mofor A C, et al. High-speed InP-based resonant tunneling diode on silicon substrate. Proc ESSDERC, 2005:257 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1546634
[21]
Wang J, Alharbi K, Ofiare A, et al. Series coupled resonant tunneling diode oscillators for terahertz applications. 7th European/UK-China Workshop on Millimeter Waves and Terahertz Technologies, 2014
[22]
Urayama K, Suzuki S, Asada M, et al. Sub-THz RTD oscillators integrated with planar horn antennas for horizontal radiation. 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008: 1
Fig. 1.  The schematics of RTD layer parameters. (a) Original structure. (b) Designed structure.

Fig. 2.  The SEM image of RTD device with 6.4 μm diameter mesa size.

Fig. 3.  I-V characteristics of RTD. (a) Pt/Ti/Pt/Au. (b) AuGe/Ni/Au. (c) AuGe/Ni/Au $+$ RTA.

Fig. 4.  I-V characteristics of RTDs with different structures. (a) Original structure. (b) Designed structure.

Table 1.   Comparison with other RTD devices achieved by different research groups.

[1]
Tonouchi M. Cutting-edge terahertz technology. Nat Photonics, 2007, 1(2):97 doi: 10.1038/nphoton.2007.3
[2]
Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. J Infrared, Millimeter, Terahertz Waves, 2011, 32(2):143 doi: 10.1007/s10762-010-9758-1
[3]
Horiuchi N. Terahertz technology:endless applications. Nat Photonics, 2010, 4(3):140 doi: 10.1038/nphoton.2010.16
[4]
[5]
Ma Y, Lu Z, Chen Q, et al. Recent advances of terahertz imaging technologies. Recent Patents on Signal Processing, 2012, 2(1):4 doi: 10.2174/1877612411202010004
[6]
Panda P, Dash G. Prospects of gallium nitride double drift region mixed tunneling avalanche transit time diodes for operation in F, Y and THz bands. J Semicond, 2016, 37(5):054001 doi: 10.1088/1674-4926/37/5/054001
[7]
Asada M, Suzuki S, Kishimoto N. Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn J Appl Phys, 2008, 47(6R):4375 doi: 10.1143/JJAP.47.4375/pdf
[8]
Orihashi N, Suzuki S, Asada M. One THz harmonic oscillation of resonant tunneling diodes. Appl Phys Lett, 2005, 87(23):233501 doi: 10.1063/1.2139850
[9]
Suzuki S, Teranishi A, Hinata K, et al. Fundamental oscillation of up to 831 GHz in GaInAs/AlAs resonant tunneling diode. Appl Phys Express, 2009, 2(5):054501 https://www.researchgate.net/publication/224484425_Fundamental_Oscillation_of_up_to_831_GHz_in_GaInAsAlAs_Resonant_Tunneling_Diode
[10]
Maekawa T, Kanaya H, Suzuki S, et al. Frequency increase in terahertz oscillation of resonant tunnelling diode up to 1.55 THz by reduced slot-antenna length. Electron Lett, 2014, 50(17):1214 doi: 10.1049/el.2014.2362
[11]
Chowdhury S, Chattaraj S, Biswas D. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate. J Semicond, 2015, 36(4):044001 doi: 10.1088/1674-4926/36/4/044001
[12]
Feiginov M, Sydlo C, Cojocari O, et al. Resonant-tunnellingdiode oscillators operating at frequencies above 1.1 THz. Appl Phys Lett, 2011, 99(23):233506 doi: 10.1063/1.3667191
[13]
Koyama Y, Sekiguchi R, Ouchi T. Oscillations up to 1.40 THz from resonant-tunneling-diode-based oscillators with integrated patch antennas. Appl Phys Express, 2013, 6(6):064102 doi: 10.7567/APEX.6.064102
[14]
Maekawa T, Kanaya H, Suzuki S, et al. Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl Phys Express, 2016, 9(2):024101 doi: 10.7567/APEX.9.024101
[15]
Kanaya H, Shibayama H, Sogabe R, et al. Fundamental oscillation up to 1.31 THz in resonant tunneling diodes with thin well and barriers. Appl Phys Express, 2012, 5(12):124101 doi: 10.1143/APEX.5.124101
[16]
Kim C, Brandli A. High-frequency high-power operation of tunnel diodes. IRE Trans Circuit Theory, 1961, 8(4):416 doi: 10.1109/TCT.1961.1086849
[17]
Song H J, Nagatsuma T. Handbook of terahertz technologies:devices and applications. Singapore:Pan Stanford Publishing, 2015
[18]
Li Z, An N, Zeng J, et al. Studying on source/drain contact resistance reduction for InP-based HEMT. Microwave Opt Technol Lett, 2016, 58(1):217 doi: 10.1002/mop.29531
[19]
Chor E F, Zhang D, Gong H, et al. Electrical characterization, metallurgical investigation, and thermal stability studies of (Pd, Ti, Au)-based ohmic contacts. J Appl Phys, 2000, 87(5):2437 doi: 10.1063/1.372198
[20]
Prost W, Khorenko V, Mofor A C, et al. High-speed InP-based resonant tunneling diode on silicon substrate. Proc ESSDERC, 2005:257 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1546634
[21]
Wang J, Alharbi K, Ofiare A, et al. Series coupled resonant tunneling diode oscillators for terahertz applications. 7th European/UK-China Workshop on Millimeter Waves and Terahertz Technologies, 2014
[22]
Urayama K, Suzuki S, Asada M, et al. Sub-THz RTD oscillators integrated with planar horn antennas for horizontal radiation. 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008: 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2986 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 23 July 2016 Revised: 05 February 2017 Online: Published: 01 June 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqiang Li, Hailin Tang, Haitao Liu, Yi Liang, Qian Li, Ning An, Jianping Zeng, Wenjie Wang, Yongzhong Xiong. Improving the peak current density of resonant tunneling diode based on InP substrate[J]. Journal of Semiconductors, 2017, 38(6): 064005. doi: 10.1088/1674-4926/38/6/064005 Z Q Li, H L Tang, H T Liu, Y Liang, Q Li, N An, J P Zeng, W J Wang, Y Z Xiong. Improving the peak current density of resonant tunneling diode based on InP substrate[J]. J. Semicond., 2017, 38(6): 064005. doi: 10.1088/1674-4926/38/6/064005.Export: BibTex EndNote
      Citation:
      Zhiqiang Li, Hailin Tang, Haitao Liu, Yi Liang, Qian Li, Ning An, Jianping Zeng, Wenjie Wang, Yongzhong Xiong. Improving the peak current density of resonant tunneling diode based on InP substrate[J]. Journal of Semiconductors, 2017, 38(6): 064005. doi: 10.1088/1674-4926/38/6/064005

      Z Q Li, H L Tang, H T Liu, Y Liang, Q Li, N An, J P Zeng, W J Wang, Y Z Xiong. Improving the peak current density of resonant tunneling diode based on InP substrate[J]. J. Semicond., 2017, 38(6): 064005. doi: 10.1088/1674-4926/38/6/064005.
      Export: BibTex EndNote

      Improving the peak current density of resonant tunneling diode based on InP substrate

      doi: 10.1088/1674-4926/38/6/064005
      More Information
      • Corresponding author: Zhiqiang Li Email:chiniao1203@163.com; Yongzhong Xiong Email:xyz1289@126.com
      • Received Date: 2016-07-23
      • Revised Date: 2017-02-05
      • Published Date: 2017-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return