SEMICONDUCTOR DEVICES

Electrical contacts to two-dimensional transition-metal dichalcogenides

Shuxian Wang1, Zhihao Yu2, and Xinran Wang2

+ Author Affiliations

 Corresponding author: Zhihao Yu, zhihao@nju.edu.cn

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have attracted enormous interests as the novel channel materials for atomically thin transistors. Despite considerable progress in recent years, the transistor performance is largely limited by the excessive contact resistance at the source/drain interface. In this review, a summary of recent progress on improving electrical contact to TMDC transistors is presented. Several important strategies including topology of contacts, choice of metals and interface engineering are discussed.

Key words: two-dimensionchannel materialsFin-FET



[1]
Lange K, Müller-Seitz G, Sydow J, et al. Financing innovations in uncertain networks—filling in roadmap gaps in the semiconductor industry. Research Policy, 2013, 42(3): 647 doi: 10.1016/j.respol.2012.12.001
[2]
Liu Q, Vinet M, Gimbert J, et al. High performance UTBB FDSOI devices featuring 20 nm gate length for 14 nm node and beyond. IEEE International Electron Devices Meeting, 2013: 9.2.1
[3]
Mistry K, Allen C, Auth C, et al. A 45 nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE International Electron Devices Meeting, 2007
[4]
Welser J, Hoyt J L, Takagi S, et al. Strain dependence of the performance enhancement in strained-Si n-MOSFETs. Proceedings of 1994 IEEE International Electron Devices Meeting, 1994
[5]
Welser J, Hoyt J L, Gibbons J F. Electron mobility enhancement in strained-Si n-type metal–oxide–semiconductor field-effect transistors. IEEE Electron Device Lett, 1994, 15(3): 100 doi: 10.1109/55.285389
[6]
Auth C, Allen C, Blattner A, et al. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. 2012 Symposium on VLSI Technology (VLSIT), 2012
[7]
Fried D M, Nowak E J, Rainey B A, et al. Fin FET devices from bulk semiconductor and method for forming. Google Patents, 2003
[8]
Yu B, Wann C H, Nowak E D, et al. Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET's. IEEE Trans Electron Devices, 1997, 44(4): 627 doi: 10.1109/16.563368
[9]
Wilson L. International technology roadmap for semiconductors (ITRS). Semiconductor Industry Association. 2013.
[10]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[11]
Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229 doi: 10.1126/science.1150878
[12]
Lu C L, Chang C, Huang Y, et al. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys Rev B, 2006, 73(14): 144427 doi: 10.1103/PhysRevB.73.144427
[13]
Zhang Y, Tang T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459(7248): 820 doi: 10.1038/nature08105
[14]
Elias D C, Nair R R, Mohiuddin T, et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323(5914): 610 doi: 10.1126/science.1167130
[15]
Jariwala D, Sangwan V K, Lauhon L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102 doi: 10.1021/nn500064s
[16]
Lieth R, Terhell J. Transition metal dichalcogenides. In: Preparation and crystal growth of materials with layered structures. Springer, 1977: 141
[17]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11): 699 doi: 10.1038/nnano.2012.193
[18]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147 doi: 10.1038/nnano.2010.279
[19]
Wang Y, Li L, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15(6): 4013 doi: 10.1021/acs.nanolett.5b00964
[20]
Zhao Y, Qiao J, Yu Z, et al. High‐electron‐mobility and air‐stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29(5): 1604230 doi: 10.1002/adma.201604230
[21]
Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.v22.7
[22]
Liu E, Fu Y, Wang Y, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat Commun, 2015, 6: 6991 doi: 10.1038/ncomms7991
[23]
Wang Y, Liu E, Liu H, et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat Commun, 2016, 7: 13142 doi: 10.1038/ncomms13142
[24]
Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol, 2015, 10(3): 270 doi: 10.1038/nnano.2014.323
[25]
Mak K F, Mcgill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489 doi: 10.1126/science.1250140
[26]
Lee C, Lee G, Van Der Zande A M, et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nanotechnol, 2014, 9(9): 676 doi: 10.1038/nnano.2014.150
[27]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8(8): 8292 doi: 10.1021/nn5027388
[28]
Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences, 2014, 111(17): 6198 doi: 10.1073/pnas.1405435111
[29]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419 doi: 10.1038/nature12385
[30]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14(12): 1195 doi: 10.1038/nmat4452
[31]
Haensch W, Nowak E J, Dennard R H, et al. Silicon CMOS devices beyond scaling. IBM J Res Dev, 2006, 50(4.5): 339 doi: 10.1147/rd.504.0339
[32]
Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563 doi: 10.1021/nn303513c
[33]
Jena D, Banerjee K, Xing G H. 2D crystal semiconductors: Intimate contacts. Nat Mater, 2014, 13(12): 1076 doi: 10.1038/nmat4121
[34]
Grosse K L, Bae M, Lian F, et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nat Nanotechnol, 2011, 6(5): 287 doi: 10.1038/nnano.2011.39
[35]
Xia F, Perebeinos V, Lin Y, et al. The origins and limits of metal–graphene junction resistance. Nat Nanotechnol, 2011, 6(3): 179 doi: 10.1038/nnano.2011.6
[36]
Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3): 31005
[37]
Nagashio K, Nishimura T, Kita K, et al. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting (IEDM), 2009
[38]
Russo S, Craciun M F, Yamamoto M, et al. Contact resistance in graphene-based devices. Physica E, 2010, 42(4): 677 doi: 10.1016/j.physe.2009.11.080
[39]
Ojima K, Otsuka Y, Matsumoto T, et al. Printing electrode for top-contact molecular junction. Appl Phys Lett, 2005, 87(23): 234110 doi: 10.1063/1.2140471
[40]
Matsuda Y, Deng W, Goddard Iii W A. Contact resistance for " end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics. J Phys Chem C, 2010, 114(41): 17845 doi: 10.1021/jp806437y
[41]
Kwon H, Lee K, Heo J, et al. Characterization of edge contact: atomically resolved semiconductor–metal lateral boundary in MoS2. Adv Mater, 2017, 29(41): 1702931 doi: 10.1002/adma.v29.41
[42]
Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614 doi: 10.1126/science.1244358
[43]
Chu T, Chen Z. Understanding the electrical impact of edge contacts in few-layer graphene. ACS Nano, 2014, 8(4): 3584 doi: 10.1021/nn500043y
[44]
Guimarães M H, Gao H, Han Y, et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano, 2016, 10(6): 6392 doi: 10.1021/acsnano.6b02879
[45]
Liu W, Kang J, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13(5): 1983 doi: 10.1021/nl304777e
[46]
Das S, Chen H, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1): 100
[47]
Walia S, Balendhran S, Wang Y, et al. Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Appl Phys Lett, 2013, 103(23): 232105 doi: 10.1063/1.4840317
[48]
Liu W, Kang J, Cao W, et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. IEEE International Electron Devices Meeting, 2013
[49]
Wang H, Yu L, Lee Y, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12(9): 4674 doi: 10.1021/nl302015v
[50]
Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts. ApplPhys Lett, 2014, 104(9): 93106 doi: 10.1063/1.4866340
[51]
Liu H, Neal A T, Du Y, et al. Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. ECS Trans, 2013, 58(7): 203 doi: 10.1149/05807.0203ecst
[52]
Gan L, Zhao Y, Huang D, et al. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y= F and OH) all-2D semiconductor/metal contacts. Phys Rev B, 2013, 87(24): 245307 doi: 10.1103/PhysRevB.87.245307
[53]
Popov I, Seifert G, Tománek D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett, 2012, 108(15): 156802 doi: 10.1103/PhysRevLett.108.156802
[54]
Lin Y, Dumcenco D O, Huang Y, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol, 2014, 9(5): 391 doi: 10.1038/nnano.2014.64
[55]
Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. Apl Mater, 2014, 2(9): 92516 doi: 10.1063/1.4896077
[56]
Yu L, Lee Y, Ling X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett, 2014, 14(6): 3055 doi: 10.1021/nl404795z
[57]
Pelaz L, Duffy R, Aboy M, et al. Atomistic modeling of impurity ion implantation in ultra-thin-body Si devices. IEEE International Electron Devices Meeting, 2008
[58]
Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13(5): 1991 doi: 10.1021/nl400044m
[59]
Du Y, Liu H, Neal A T, et al. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett, 2013, 34(10): 1328 doi: 10.1109/LED.2013.2277311
[60]
Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14(11): 6275 doi: 10.1021/nl502603d
[61]
Rai A, Valsaraj A, Movva H C, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett, 2015, 15(7): 4329 doi: 10.1021/acs.nanolett.5b00314
[62]
Cui Y, Xin R, Yu Z, et al. High‐performance monolayer WS2 field‐effect transistors on high‐κ dielectrics. Adv Mater, 2015, 27(35): 5230 doi: 10.1002/adma.201502222
[63]
Chuang S, Battaglia C, Azcatl A, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett, 2014, 14(3): 1337 doi: 10.1021/nl4043505
[64]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7): 3788 doi: 10.1021/nl301702r
[65]
Tosun M, Chuang S, Fang H, et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014, 8(5): 4948 doi: 10.1021/nn5009929
[66]
Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13(12): 1128 doi: 10.1038/nmat4080
[67]
Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces. Nano Lett, 2014, 14(4): 1714 doi: 10.1021/nl403465v
[68]
Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesid MoS2. Nano Lett, 2015, 16(1): 276
[69]
Chen J, Odenthal P M, Swartz A G, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett, 2013, 13(7): 3106 doi: 10.1021/nl4010157
[70]
Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): c9439 doi: 10.1126/science.aac9439
[71]
Wang X, Xia F. Van der Waals heterostructures: Stacked 2D materials shed light. Nat Materl, 2015, 14(3): 264 doi: 10.1038/nmat4218
[72]
Hu W, Yang J. Two-dimensional van der Waals heterojunctions for functional materials and devices. J Mater Chem C, 2017, 5(47): 12289 doi: 10.1039/C7TC04697A
[73]
Ran J, Guo W, Wang H, et al. Metal‐free 2D/2D phosphorene/g‐C3N4 Van der Waals heterojunction for highly enhanced visible‐light photocatalytic H2 production. Adv Mater, 2018, 30(25): 1800128 doi: 10.1002/adma.v30.25
[74]
Islam M A, Kim J H, Schropp A, et al. Centimeter-scale 2D van der Waals vertical heterostructures integrated on deformable substrates enabled by gold sacrificial layer-assisted growth. Nano Lett, 2017, 17(10): 6157 doi: 10.1021/acs.nanolett.7b02776
[75]
Aretouli K E, Tsoutsou D, Tsipas P, et al. Epitaxial 2D SnSe2/2D WSe2 van der waals heterostructures. ACS Appl Mater Interf, 2016, 8(35): 23222 doi: 10.1021/acsami.6b02933
[76]
Cui X, Shih E, Jauregui L A, et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett, 2017, 17(8): 4781 doi: 10.1021/acs.nanolett.7b01536
[77]
Cui X, Lee G, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10(6): 534 doi: 10.1038/nnano.2015.70
[78]
Chanana A, Mahapatra S. Prospects of zero Schottky barrier height in a graphene-inserted MoS2–metal interface. J Appl Phys, 2016, 119(1): 14303 doi: 10.1063/1.4938742
[79]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947 doi: 10.1126/science.1218461
[80]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311 doi: 10.1126/science.1235547
[81]
Xia C, Xue B, Wang T, et al. Interlayer coupling effects on Schottky barrier in the arsenene–graphene van der Waals heterostructures. Appl Phys Lett, 2015, 107(19): 193107 doi: 10.1063/1.4935602
[82]
Li W, Wang T, Dai X, et al. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field. Physica E, 2017, 88: 6 doi: 10.1016/j.physe.2016.11.013
[83]
Aziza Z B, Pierucci D, Henck H, et al. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Phys Rev B, 2017, 96(3): 35407 doi: 10.1103/PhysRevB.96.035407
[84]
Zhang F, Li W, Ma Y, et al. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field. Solid State Commun, 2018, 271: 56 doi: 10.1016/j.ssc.2017.12.026
[85]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9): 16042 doi: 10.1038/natrevmats.2016.42
[86]
Farmanbar M, Brocks G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer. Phys Rev B, 2015, 91(16): 161304 doi: 10.1103/PhysRevB.91.161304
[87]
Chuang H, Chamlagain B, Koehler M, et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett, 2016, 16(3): 1896 doi: 10.1021/acs.nanolett.5b05066
[88]
Su J, Feng L, Zeng W, et al. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion–MoS2 sandwich interfaces. Nanoscale, 2017, 9(22): 7429 doi: 10.1039/C7NR00720E
[89]
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557: 696 doi: 10.1038/s41586-018-0129-8
[90]
Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev, 2018, 47(9): 3037 doi: 10.1039/C7CS00828G
[91]
Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev, 2018, 47(9): 3100 doi: 10.1039/C8CS00024G
Fig. 1.  (Color online) Typical structure of field-effect transistors.

Fig. 2.  (Color online) Interface geometries of metal-2D contacts: (a) Top-contact configuration, (b) Edge-contact configuration[30].

Fig. 3.  (Color online) Contact interface between MoS2 and the (a) Au(111) and (b) Ti(0001) surface, (c) Binding energy E per interface metal atom as a function of the separation d between MoS2 and the Ti(0001) and Au(111) surface[53].

Fig. 4.  (Color online) Schematic of Cl-doped few-layer WS2 back-gate FET and the binding energies of core levels in WS2 with and without the DCE treatment[60].

Fig. 5.  (Color online) Device schematics and characterization of a bottom gated FET with Au deposited directly on (a) the 2H phase MoS2, and (b) the patterned 1T phase MoS2[66].

Fig. 6.  (Color online) (a) Schematic cross-sectional views of the typical metal/insertion-MoS2 sandwich interface. (b) Contact resistivity as function of Ta2O5 thickness[65].

Fig. 7.  (Color online) Planar 2D transistor based on van der Waals vertical contacts: (a) coplanar contacts, (b) staggered contacts and (c) hybrid contacts[85].

Fig. 8.  (Color online) Illustration and structural characterizations of vdW meta–semiconductor junctions[89].

[1]
Lange K, Müller-Seitz G, Sydow J, et al. Financing innovations in uncertain networks—filling in roadmap gaps in the semiconductor industry. Research Policy, 2013, 42(3): 647 doi: 10.1016/j.respol.2012.12.001
[2]
Liu Q, Vinet M, Gimbert J, et al. High performance UTBB FDSOI devices featuring 20 nm gate length for 14 nm node and beyond. IEEE International Electron Devices Meeting, 2013: 9.2.1
[3]
Mistry K, Allen C, Auth C, et al. A 45 nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. IEEE International Electron Devices Meeting, 2007
[4]
Welser J, Hoyt J L, Takagi S, et al. Strain dependence of the performance enhancement in strained-Si n-MOSFETs. Proceedings of 1994 IEEE International Electron Devices Meeting, 1994
[5]
Welser J, Hoyt J L, Gibbons J F. Electron mobility enhancement in strained-Si n-type metal–oxide–semiconductor field-effect transistors. IEEE Electron Device Lett, 1994, 15(3): 100 doi: 10.1109/55.285389
[6]
Auth C, Allen C, Blattner A, et al. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. 2012 Symposium on VLSI Technology (VLSIT), 2012
[7]
Fried D M, Nowak E J, Rainey B A, et al. Fin FET devices from bulk semiconductor and method for forming. Google Patents, 2003
[8]
Yu B, Wann C H, Nowak E D, et al. Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET's. IEEE Trans Electron Devices, 1997, 44(4): 627 doi: 10.1109/16.563368
[9]
Wilson L. International technology roadmap for semiconductors (ITRS). Semiconductor Industry Association. 2013.
[10]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
[11]
Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229 doi: 10.1126/science.1150878
[12]
Lu C L, Chang C, Huang Y, et al. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys Rev B, 2006, 73(14): 144427 doi: 10.1103/PhysRevB.73.144427
[13]
Zhang Y, Tang T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009, 459(7248): 820 doi: 10.1038/nature08105
[14]
Elias D C, Nair R R, Mohiuddin T, et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323(5914): 610 doi: 10.1126/science.1167130
[15]
Jariwala D, Sangwan V K, Lauhon L J, et al. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102 doi: 10.1021/nn500064s
[16]
Lieth R, Terhell J. Transition metal dichalcogenides. In: Preparation and crystal growth of materials with layered structures. Springer, 1977: 141
[17]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol, 2012, 7(11): 699 doi: 10.1038/nnano.2012.193
[18]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147 doi: 10.1038/nnano.2010.279
[19]
Wang Y, Li L, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15(6): 4013 doi: 10.1021/acs.nanolett.5b00964
[20]
Zhao Y, Qiao J, Yu Z, et al. High‐electron‐mobility and air‐stable 2D layered PtSe2 FETs. Adv Mater, 2017, 29(5): 1604230 doi: 10.1002/adma.201604230
[21]
Li H, Zhang Q, Yap C C R, et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater, 2012, 22(7): 1385 doi: 10.1002/adfm.v22.7
[22]
Liu E, Fu Y, Wang Y, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat Commun, 2015, 6: 6991 doi: 10.1038/ncomms7991
[23]
Wang Y, Liu E, Liu H, et al. Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2. Nat Commun, 2016, 7: 13142 doi: 10.1038/ncomms13142
[24]
Yu Y, Yang F, Lu X F, et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol, 2015, 10(3): 270 doi: 10.1038/nnano.2014.323
[25]
Mak K F, Mcgill K L, Park J, et al. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489 doi: 10.1126/science.1250140
[26]
Lee C, Lee G, Van Der Zande A M, et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat Nanotechnol, 2014, 9(9): 676 doi: 10.1038/nnano.2014.150
[27]
Deng Y, Luo Z, Conrad N J, et al. Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8(8): 8292 doi: 10.1021/nn5027388
[28]
Fang H, Battaglia C, Carraro C, et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences, 2014, 111(17): 6198 doi: 10.1073/pnas.1405435111
[29]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419 doi: 10.1038/nature12385
[30]
Allain A, Kang J, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14(12): 1195 doi: 10.1038/nmat4452
[31]
Haensch W, Nowak E J, Dennard R H, et al. Silicon CMOS devices beyond scaling. IBM J Res Dev, 2006, 50(4.5): 339 doi: 10.1147/rd.504.0339
[32]
Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563 doi: 10.1021/nn303513c
[33]
Jena D, Banerjee K, Xing G H. 2D crystal semiconductors: Intimate contacts. Nat Mater, 2014, 13(12): 1076 doi: 10.1038/nmat4121
[34]
Grosse K L, Bae M, Lian F, et al. Nanoscale Joule heating, Peltier cooling and current crowding at graphene–metal contacts. Nat Nanotechnol, 2011, 6(5): 287 doi: 10.1038/nnano.2011.39
[35]
Xia F, Perebeinos V, Lin Y, et al. The origins and limits of metal–graphene junction resistance. Nat Nanotechnol, 2011, 6(3): 179 doi: 10.1038/nnano.2011.6
[36]
Kang J, Liu W, Sarkar D, et al. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3): 31005
[37]
Nagashio K, Nishimura T, Kita K, et al. Metal/graphene contact as a performance killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting (IEDM), 2009
[38]
Russo S, Craciun M F, Yamamoto M, et al. Contact resistance in graphene-based devices. Physica E, 2010, 42(4): 677 doi: 10.1016/j.physe.2009.11.080
[39]
Ojima K, Otsuka Y, Matsumoto T, et al. Printing electrode for top-contact molecular junction. Appl Phys Lett, 2005, 87(23): 234110 doi: 10.1063/1.2140471
[40]
Matsuda Y, Deng W, Goddard Iii W A. Contact resistance for " end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics. J Phys Chem C, 2010, 114(41): 17845 doi: 10.1021/jp806437y
[41]
Kwon H, Lee K, Heo J, et al. Characterization of edge contact: atomically resolved semiconductor–metal lateral boundary in MoS2. Adv Mater, 2017, 29(41): 1702931 doi: 10.1002/adma.v29.41
[42]
Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158): 614 doi: 10.1126/science.1244358
[43]
Chu T, Chen Z. Understanding the electrical impact of edge contacts in few-layer graphene. ACS Nano, 2014, 8(4): 3584 doi: 10.1021/nn500043y
[44]
Guimarães M H, Gao H, Han Y, et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano, 2016, 10(6): 6392 doi: 10.1021/acsnano.6b02879
[45]
Liu W, Kang J, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett, 2013, 13(5): 1983 doi: 10.1021/nl304777e
[46]
Das S, Chen H, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett, 2012, 13(1): 100
[47]
Walia S, Balendhran S, Wang Y, et al. Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Appl Phys Lett, 2013, 103(23): 232105 doi: 10.1063/1.4840317
[48]
Liu W, Kang J, Cao W, et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. IEEE International Electron Devices Meeting, 2013
[49]
Wang H, Yu L, Lee Y, et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett, 2012, 12(9): 4674 doi: 10.1021/nl302015v
[50]
Kang J, Liu W, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts. ApplPhys Lett, 2014, 104(9): 93106 doi: 10.1063/1.4866340
[51]
Liu H, Neal A T, Du Y, et al. Fundamentals in MoS2 transistors: dielectric, scaling and metal contacts. ECS Trans, 2013, 58(7): 203 doi: 10.1149/05807.0203ecst
[52]
Gan L, Zhao Y, Huang D, et al. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y= F and OH) all-2D semiconductor/metal contacts. Phys Rev B, 2013, 87(24): 245307 doi: 10.1103/PhysRevB.87.245307
[53]
Popov I, Seifert G, Tománek D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett, 2012, 108(15): 156802 doi: 10.1103/PhysRevLett.108.156802
[54]
Lin Y, Dumcenco D O, Huang Y, et al. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat Nanotechnol, 2014, 9(5): 391 doi: 10.1038/nnano.2014.64
[55]
Kappera R, Voiry D, Yalcin S E, et al. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. Apl Mater, 2014, 2(9): 92516 doi: 10.1063/1.4896077
[56]
Yu L, Lee Y, Ling X, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett, 2014, 14(6): 3055 doi: 10.1021/nl404795z
[57]
Pelaz L, Duffy R, Aboy M, et al. Atomistic modeling of impurity ion implantation in ultra-thin-body Si devices. IEEE International Electron Devices Meeting, 2008
[58]
Fang H, Tosun M, Seol G, et al. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett, 2013, 13(5): 1991 doi: 10.1021/nl400044m
[59]
Du Y, Liu H, Neal A T, et al. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett, 2013, 34(10): 1328 doi: 10.1109/LED.2013.2277311
[60]
Yang L, Majumdar K, Liu H, et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett, 2014, 14(11): 6275 doi: 10.1021/nl502603d
[61]
Rai A, Valsaraj A, Movva H C, et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano Lett, 2015, 15(7): 4329 doi: 10.1021/acs.nanolett.5b00314
[62]
Cui Y, Xin R, Yu Z, et al. High‐performance monolayer WS2 field‐effect transistors on high‐κ dielectrics. Adv Mater, 2015, 27(35): 5230 doi: 10.1002/adma.201502222
[63]
Chuang S, Battaglia C, Azcatl A, et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett, 2014, 14(3): 1337 doi: 10.1021/nl4043505
[64]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7): 3788 doi: 10.1021/nl301702r
[65]
Tosun M, Chuang S, Fang H, et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano, 2014, 8(5): 4948 doi: 10.1021/nn5009929
[66]
Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13(12): 1128 doi: 10.1038/nmat4080
[67]
Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial Fermi level pinning at metal–MoS2 interfaces. Nano Lett, 2014, 14(4): 1714 doi: 10.1021/nl403465v
[68]
Lee S, Tang A, Aloni S, et al. Statistical study on the Schottky barrier reduction of tunneling contacts to CVD synthesid MoS2. Nano Lett, 2015, 16(1): 276
[69]
Chen J, Odenthal P M, Swartz A G, et al. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett, 2013, 13(7): 3106 doi: 10.1021/nl4010157
[70]
Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): c9439 doi: 10.1126/science.aac9439
[71]
Wang X, Xia F. Van der Waals heterostructures: Stacked 2D materials shed light. Nat Materl, 2015, 14(3): 264 doi: 10.1038/nmat4218
[72]
Hu W, Yang J. Two-dimensional van der Waals heterojunctions for functional materials and devices. J Mater Chem C, 2017, 5(47): 12289 doi: 10.1039/C7TC04697A
[73]
Ran J, Guo W, Wang H, et al. Metal‐free 2D/2D phosphorene/g‐C3N4 Van der Waals heterojunction for highly enhanced visible‐light photocatalytic H2 production. Adv Mater, 2018, 30(25): 1800128 doi: 10.1002/adma.v30.25
[74]
Islam M A, Kim J H, Schropp A, et al. Centimeter-scale 2D van der Waals vertical heterostructures integrated on deformable substrates enabled by gold sacrificial layer-assisted growth. Nano Lett, 2017, 17(10): 6157 doi: 10.1021/acs.nanolett.7b02776
[75]
Aretouli K E, Tsoutsou D, Tsipas P, et al. Epitaxial 2D SnSe2/2D WSe2 van der waals heterostructures. ACS Appl Mater Interf, 2016, 8(35): 23222 doi: 10.1021/acsami.6b02933
[76]
Cui X, Shih E, Jauregui L A, et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett, 2017, 17(8): 4781 doi: 10.1021/acs.nanolett.7b01536
[77]
Cui X, Lee G, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol, 2015, 10(6): 534 doi: 10.1038/nnano.2015.70
[78]
Chanana A, Mahapatra S. Prospects of zero Schottky barrier height in a graphene-inserted MoS2–metal interface. J Appl Phys, 2016, 119(1): 14303 doi: 10.1063/1.4938742
[79]
Britnell L, Gorbachev R V, Jalil R, et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947 doi: 10.1126/science.1218461
[80]
Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311 doi: 10.1126/science.1235547
[81]
Xia C, Xue B, Wang T, et al. Interlayer coupling effects on Schottky barrier in the arsenene–graphene van der Waals heterostructures. Appl Phys Lett, 2015, 107(19): 193107 doi: 10.1063/1.4935602
[82]
Li W, Wang T, Dai X, et al. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field. Physica E, 2017, 88: 6 doi: 10.1016/j.physe.2016.11.013
[83]
Aziza Z B, Pierucci D, Henck H, et al. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures. Phys Rev B, 2017, 96(3): 35407 doi: 10.1103/PhysRevB.96.035407
[84]
Zhang F, Li W, Ma Y, et al. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field. Solid State Commun, 2018, 271: 56 doi: 10.1016/j.ssc.2017.12.026
[85]
Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1(9): 16042 doi: 10.1038/natrevmats.2016.42
[86]
Farmanbar M, Brocks G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a BN monolayer. Phys Rev B, 2015, 91(16): 161304 doi: 10.1103/PhysRevB.91.161304
[87]
Chuang H, Chamlagain B, Koehler M, et al. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett, 2016, 16(3): 1896 doi: 10.1021/acs.nanolett.5b05066
[88]
Su J, Feng L, Zeng W, et al. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion–MoS2 sandwich interfaces. Nanoscale, 2017, 9(22): 7429 doi: 10.1039/C7NR00720E
[89]
Liu Y, Guo J, Zhu E, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557: 696 doi: 10.1038/s41586-018-0129-8
[90]
Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev, 2018, 47(9): 3037 doi: 10.1039/C7CS00828G
[91]
Hu Z, Wu Z, Han C, et al. Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chem Soc Rev, 2018, 47(9): 3100 doi: 10.1039/C8CS00024G
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5161 Times PDF downloads: 268 Times Cited by: 0 Times

    History

    Received: 27 August 2018 Revised: 18 September 2018 Online: Uncorrected proof: 12 October 2018Accepted Manuscript: 12 October 2018Corrected proof: 01 November 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides[J]. Journal of Semiconductors, 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001 S X Wang, Z H Yu, X R Wang, Electrical contacts to two-dimensional transition-metal dichalcogenides[J]. J. Semicond., 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001.Export: BibTex EndNote
      Citation:
      Shuxian Wang, Zhihao Yu, Xinran Wang. Electrical contacts to two-dimensional transition-metal dichalcogenides[J]. Journal of Semiconductors, 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001

      S X Wang, Z H Yu, X R Wang, Electrical contacts to two-dimensional transition-metal dichalcogenides[J]. J. Semicond., 2018, 39(12): 124001. doi: 10.1088/1674-4926/39/12/124001.
      Export: BibTex EndNote

      Electrical contacts to two-dimensional transition-metal dichalcogenides

      doi: 10.1088/1674-4926/39/12/124001
      More Information
      • Corresponding author: zhihao@nju.edu.cn
      • Received Date: 2018-08-27
      • Revised Date: 2018-09-18
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return