SEMICONDUCTOR DEVICES

Effect of optical illumination on DDR IMPATT diode at 36 GHz

Atanu Banerjee1, and M. Mitra2

+ Author Affiliations

 Corresponding author: Atanu Banerjee, E-mail: atanur_mailbox@yahoo.com, monojit_m1@yahoo.co.in

PDF

Abstract: A reverse biased p–n junction diode with proper resonant cavity and boundary conditions is able to generate rf power and shows normal DC and small signal properties designed with semiconductor materials like 4H-SiC, GaAs, InP, Si-based DDR IMPATT structure at Ka band with dark condition. But when it is exposed to optical illumination through a proper optical window for both top mounted (TM) and flip chip (FC) configuration, it shows the influence on the oscillator performances in that band of frequency. The simulated results are analyzed for 36 GHz window frequency in each of the diodes and relative differences are found in power output and frequency of all these diodes with variable intensities of illumination. Finally it is found that optical control has immense effect in both FC and TM mode regarding the reduction of output power and shifting of operating frequency from which optimization is done for the best optically sensitive material for IMPATT diode.

Key words: optical modulationflip chip structuretop mounted structurewindow frequencyDDR IMPATT diode



[1]
Karmakara P K, Maiti M, Mondala S, et al. Determination of window frequency in the millimeter wave band in the range of 58° north through 45° south over the globe. Adv Space Res, 2011, 48: 146 doi: 10.1016/j.asr.2011.02.019
[2]
Chang Y, Hellum J M, Paul J A, et al. Millimeter-wave IMPATT sources for Communication Applications. IEEE MTT-S International Microwave Symposium Digest, 1977: 216
[3]
Gray W W, Kikushima L, Morentc N P, et al. Applying IMPATT power sources to modern microwave system. IEEE J Solid-State Circuits, 1969, 4(6): 409 doi: 10.1109/JSSC.1969.1050046
[4]
Vyas H P, Gutmann R J, Borrego J M, et al. Effect of hole versus electron photocurrent on microwave-optical interactions in impatt oscillators. IEEE Trans Electron Devices, 1979, 26(3): 232 doi: 10.1109/T-ED.1979.19411
[5]
Acharyya A, Banerjee S, Banerjee J P, et al. Optical control of millimeter-wave lateral double-drift region silicon IMPATT device. Radioengineering, 2012, 21(4): 1208
[6]
Mukherjee M, Majumder N, Roy S K, et al. Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Active and Passive Electronic Components, 2008: 1
[7]
Acharyya A, Banerjee J P. A comparative study on the effect of optical illumination on Si1−xGex and Si Based DDR IMPATT diodes at W-band. Iran J Electr Electron Eng, 2011, 7(3): 179
[8]
Yen H W, Barnoski M K, Hunsperger R G, et al. Switching of GaAs IMPATT diode oscillator by optical illumination. Appl Phys Lett, 1977, 31: 120 doi: 10.1063/1.89581
[9]
Mukherjee R, Banerjee J P. Effect of electron and hole dominant photocurrent on the millimeter-wave properties of Indium Phosphide Impatt diode at 94 GHz. Semicond Sci Technol, 1994, 9: 1 doi: 10.1088/0268-1242/9/1/001
[10]
Mukherjee M, Majumdar N. Optically illuminated 4H-SiC terahertz IMPATT device. Egypt J Solids, 2007, 30(1): 87
[11]
Acharyya A, Banerjee J P. Dependence of avalanche response time on photon flux incident on DDR silicon IMPATT devices. The 32nd PIERS, Moscow (Russia), 2012: 1
[12]
Roy S K, Banerjee J P, Pati S P, et al. A Computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT diodes. Proc 4th Conf On Num Anal of Semiconductor Devices (NASECODE IV) (Dublin) (Dublin: Boole), 1985: 494
[13]
Banerjee A, Mitra M. Analysis of Ka band DDR IMPATT diode based on different solidstate Materials. IJSCE, 2013, 3(2): 6
[14]
Roy S K, Sridharan M, Gosh R, et al. Computer methods for the dc field and carrier current profiles in impatt devices starting from the field extremum in the depletion layer. Proc of NASECODE-I Conf. on Numerical Analysis of Semiconductor Devices. Dublin: Boole Press, 1979: 266
[15]
Mazumder N, Roy S K. Effect of Enhanced Leakage Current on the Microwave Negative Resistance of High Efficiency GaAs Double Drift Region IMPATT Diode. IETE J Res, 1994, 40(1): 31 doi: 10.1080/03772063.1994.11437161
[16]
Mazumder N, Roy S K. Saturation current induced effects on the microwave and millimetre wave performance of GaAs double drift region IMPATTs. Int J Electron, 1991, 71(2): 227 doi: 10.1080/00207219108925471
[17]
Gummel H K, Blue J L. A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans Electron Devices, 1967, 14(9): 569 doi: 10.1109/T-ED.1967.16005
[18]
Vyas H P, Gutmann R J, Borrego J M, et al. Leakage current enhancement in IMPATT oscillators by photoexcitation. Electron Lett, 1977, 13(7): 189 doi: 10.1049/el:19770139
Fig. 1.  (Color online) (a) Top mounted (TM) and (b) flip-chip (FC) DDR IMPATT structures under optical illumination.

Fig. 2.  Current distributions in (a) top mounted (TM), (b) flip-chip (FC) DDR IMPATT structures.

Fig. 3.  (Color online) The effect of illumination on G-B profile of (a) A1 (4H-SiC & Si) & A2 (GaAs & InP) for FC mode, (b) B1 (4H-SiC & Si) & B2 (GaAs & InP) for TM mode. [Taking Mn = 106 for FC and Mp = 106 for TM as constant for all.]

Fig. 4.  (Color online) The effect of illumination on power profile of (a) A1 (4H-SiC & Si) & A2 (GaAs & InP) for FC mode, (b) B1 (4H-SiC & Si) & B2 (GaAs & InP) for TM mode. [Taking Mn = 106 for FC and Mp = 106 for TM as constant for all.]

Fig. 5.  (Color online) The effect of illumination on negative resistance profile of (a) A1 (4H-SiC & Si) & A2 (GaAs & InP) for FC mode, (b) B1 (4H-SiC & Si) & B2 (GaAs & InP) for TM mode. [Taking Mn = 106 for FC and Mp = 106 for TM as Constant for all.]

Fig. 6.  (Color online) Contribution of TM and FC mode on frequency chirping in optoelectronic DDR IMPATT diodes.

Fig. 7.  (Color online) Reflection of power chirping on optoelectronic-based DDR IMPATT under optical illumination.

Table 1.   All material parameters are at 300 K.

Material Em (V/m) J0 (A/m2) Eg (eV) WDP (μm) NA (m−3) ND (m−3) VB (V) VA (V)
4H-SiC 5.39 × 10 8 3.4 × 10 10 3.20 0.808 1.09 × 10 23 8.47 × 10 23 1.16 0.13
GaAs 1.61 × 10 8 4.12 × 10 10 1.44 0.0464 1.0 × 10 24 5.84 × 10 24 1.32 0.17
InP 7.7 × 10 7 2.54 × 10 10 1.34 0.23 1.6 × 10 23 6.18 × 10 23 1.75 0.17
Si 4.2 × 10 7 7.12 × 10 9 1.12 0.38 1.0 × 10 23 2.19 × 10 23 2.77 0.28
DownLoad: CSV

Table 2.   Parameters at dark condition: Mn = 106 & Mp = 106.

Material Fop (GHz) Gop (s/m2) Bop (s/m2) PRF (W) Qop ZRop (Ωm2) ZXop (Ωm2) η (%)
4H-SiC 36 −2.7 × 10 8 2.614 × 10 8 0.072 0.977 −1.92 × 10 −9 1.87 × 10 −9 11.547
GaAs 36 −4.7 × 10 9 4.55 × 10 9 1.63 0.975 −1.11 × 10 −10 1.07 × 10 −10 11.357
InP 36 −9.4 × 10 8 9.22 × 10 8 0.572 0.983 −5.42 × 10 −10 5.33 × 10 −10 11.767
Si 36 −5.67 × 10 8 5.58 × 10 8 0.871 0.984 −8.96 × 10 −10 8.82 × 10 −10 11.685
DownLoad: CSV

Table 3.   Parameters for flip-chip orientation.

Material Mn Mp FDesign (GHz) FChirp (GHz) PDesign(W) PChirp(W)
4H-SiC 106 100 36 36.14 0.071 64 0.071 51
50 36 36.14 0.071 64 0.071 39
20 36 36.42 0.071 64 0.071 03
10 36 36.83 0.071 64 0.070 43
GaAs 106 100 36 36.14 1.625 1.6213
50 36 36.14 1.625 1.6172
20 36 36.56 1.625 1.6052
10 36 37.11 1.625 1.5856
InP 106 100 36 36.14 0.5715 0.5695
50 36 36.14 0.5715 0.5675
20 36 36.28 0.5715 0.5614
10 36 36.56 0.5715 0.5517
Si 106 100 36 36.14 0.870 36 0.8683
50 36 36.14 0.870 36 0.8663
20 36 36.56 0.870 36 0.8602
10 36 36.97 0.870 36 0.8504
DownLoad: CSV

Table 4.   Parameters for top mounted orientation.

Material Mn Mp FDesign (GHz) FChirp (GHz) PDesign(W) PChirp (W)
4H-SiC 100 106 36 36.14 0.071 64 0.071 51
50 36 36.14 0.071 64 0.071 39
20 36 36.42 0.071 64 0.071 03
10 36 36.83 0.071 64 0.070 43
GaAs 100 106 36 36.14 1.625 1.6213
50 36 36.14 1.625 1.6172
20 36 36.56 1.625 1.6052
10 36 37.11 1.625 1.5856
InP 100 106 36 36.28 0.5715 0.5695
50 36 36.42 0.5715 0.5675
20 36 36.83 0.5715 0.5614
10 36 37.66 0.5715 0.5517
Si 100 106 36 36.14 0.870 36 0.8683
50 36 36.14 0.870 36 0.8663
20 36 36.56 0.870 36 0.8602
10 36 36.97 0.870 36 0.8504
DownLoad: CSV
[1]
Karmakara P K, Maiti M, Mondala S, et al. Determination of window frequency in the millimeter wave band in the range of 58° north through 45° south over the globe. Adv Space Res, 2011, 48: 146 doi: 10.1016/j.asr.2011.02.019
[2]
Chang Y, Hellum J M, Paul J A, et al. Millimeter-wave IMPATT sources for Communication Applications. IEEE MTT-S International Microwave Symposium Digest, 1977: 216
[3]
Gray W W, Kikushima L, Morentc N P, et al. Applying IMPATT power sources to modern microwave system. IEEE J Solid-State Circuits, 1969, 4(6): 409 doi: 10.1109/JSSC.1969.1050046
[4]
Vyas H P, Gutmann R J, Borrego J M, et al. Effect of hole versus electron photocurrent on microwave-optical interactions in impatt oscillators. IEEE Trans Electron Devices, 1979, 26(3): 232 doi: 10.1109/T-ED.1979.19411
[5]
Acharyya A, Banerjee S, Banerjee J P, et al. Optical control of millimeter-wave lateral double-drift region silicon IMPATT device. Radioengineering, 2012, 21(4): 1208
[6]
Mukherjee M, Majumder N, Roy S K, et al. Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Active and Passive Electronic Components, 2008: 1
[7]
Acharyya A, Banerjee J P. A comparative study on the effect of optical illumination on Si1−xGex and Si Based DDR IMPATT diodes at W-band. Iran J Electr Electron Eng, 2011, 7(3): 179
[8]
Yen H W, Barnoski M K, Hunsperger R G, et al. Switching of GaAs IMPATT diode oscillator by optical illumination. Appl Phys Lett, 1977, 31: 120 doi: 10.1063/1.89581
[9]
Mukherjee R, Banerjee J P. Effect of electron and hole dominant photocurrent on the millimeter-wave properties of Indium Phosphide Impatt diode at 94 GHz. Semicond Sci Technol, 1994, 9: 1 doi: 10.1088/0268-1242/9/1/001
[10]
Mukherjee M, Majumdar N. Optically illuminated 4H-SiC terahertz IMPATT device. Egypt J Solids, 2007, 30(1): 87
[11]
Acharyya A, Banerjee J P. Dependence of avalanche response time on photon flux incident on DDR silicon IMPATT devices. The 32nd PIERS, Moscow (Russia), 2012: 1
[12]
Roy S K, Banerjee J P, Pati S P, et al. A Computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT diodes. Proc 4th Conf On Num Anal of Semiconductor Devices (NASECODE IV) (Dublin) (Dublin: Boole), 1985: 494
[13]
Banerjee A, Mitra M. Analysis of Ka band DDR IMPATT diode based on different solidstate Materials. IJSCE, 2013, 3(2): 6
[14]
Roy S K, Sridharan M, Gosh R, et al. Computer methods for the dc field and carrier current profiles in impatt devices starting from the field extremum in the depletion layer. Proc of NASECODE-I Conf. on Numerical Analysis of Semiconductor Devices. Dublin: Boole Press, 1979: 266
[15]
Mazumder N, Roy S K. Effect of Enhanced Leakage Current on the Microwave Negative Resistance of High Efficiency GaAs Double Drift Region IMPATT Diode. IETE J Res, 1994, 40(1): 31 doi: 10.1080/03772063.1994.11437161
[16]
Mazumder N, Roy S K. Saturation current induced effects on the microwave and millimetre wave performance of GaAs double drift region IMPATTs. Int J Electron, 1991, 71(2): 227 doi: 10.1080/00207219108925471
[17]
Gummel H K, Blue J L. A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans Electron Devices, 1967, 14(9): 569 doi: 10.1109/T-ED.1967.16005
[18]
Vyas H P, Gutmann R J, Borrego J M, et al. Leakage current enhancement in IMPATT oscillators by photoexcitation. Electron Lett, 1977, 13(7): 189 doi: 10.1049/el:19770139
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2718 Times PDF downloads: 23 Times Cited by: 0 Times

    History

    Received: 14 March 2017 Revised: 09 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Atanu Banerjee, M. Mitra. Effect of optical illumination on DDR IMPATT diode at 36 GHz[J]. Journal of Semiconductors, 2017, 38(11): 114002. doi: 10.1088/1674-4926/38/11/114002 A Banerjee, M. Mitra. Effect of optical illumination on DDR IMPATT diode at 36 GHz[J]. J. Semicond., 2017, 38(11): 114002. doi: 10.1088/1674-4926/38/11/114002.Export: BibTex EndNote
      Citation:
      Atanu Banerjee, M. Mitra. Effect of optical illumination on DDR IMPATT diode at 36 GHz[J]. Journal of Semiconductors, 2017, 38(11): 114002. doi: 10.1088/1674-4926/38/11/114002

      A Banerjee, M. Mitra. Effect of optical illumination on DDR IMPATT diode at 36 GHz[J]. J. Semicond., 2017, 38(11): 114002. doi: 10.1088/1674-4926/38/11/114002.
      Export: BibTex EndNote

      Effect of optical illumination on DDR IMPATT diode at 36 GHz

      doi: 10.1088/1674-4926/38/11/114002
      More Information
      • Corresponding author: E-mail: atanur_mailbox@yahoo.com, monojit_m1@yahoo.co.in
      • Received Date: 2017-03-14
      • Revised Date: 2017-05-09
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return