SEMICONDUCTOR DEVICES

Thermal investigation of high-power GaAs-based laser diodes

Jichuan Liu, Cuiluan Wang, Suping Liu and Xiaoyu Ma

+ Author Affiliations

 Corresponding author: Wang Cuiluan Email: clwang@semi.ac.cn

PDF

Abstract: The thermal characteristics of high-power AlGaAs/GaAs laser diodes (LDs) at high current (2-10 A) are studied with electrical transient method. The temperature rise increases linearly with the current. The thermal resistance of chip is the largest proportion of total thermal resistance. By increasing the width of the chip from 500 to 800 μm, the temperature rise and thermal resistance decrease by 8.5% and 8.8%, respectively.

Key words: laser diodeshigh powertemperature risethermal resistanceelectrical transient method



[1]
Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser. Chin J Lumin 2015, 36(1): 1(in Chinese) http://d-nb.info/977172988/04
[2]
Crump P, Wenzel H, Erbert G, et al. Progress in increasing the maximum achievable output power of broad area diode lasers. SPIE, 2012, 8241: 82410U doi: 10.1117/12.905250
[3]
Pietrzak A, Hülsewede R, Zorn M, et al. Progress in efficiencyoptimized high-power diode lasers. SPIE, 2013, 8898: 889807 http://adsabs.harvard.edu/abs/2013SPIE.8898E..07P
[4]
Li X, Zhang Y, Wang J, et al. Influence of package structure on the performance of the single emitter diode laser. IEEE Trans Compon Packag Manuf Technol, 2012, 2(10): 1592 doi: 10.1109/TCPMT.2012.2207456
[5]
Bao L, Leisher P, Wang J, et al. High reliability and high performance of 9xx nm single emitter laser diodes. SPIE, 2011, 7918: 791806 doi: 10.1117/12.875869
[6]
Feng M X, Zhang S M, Jiang D S, et al. Thermal characterization of GaN-based laser diodes by forward-voltage method. J Appl Phys, 2012, 111(9): 094513 doi: 10.1063/1.4716003
[7]
Byron L M, Farzin A, Nathaniel R B, et al. Thermal characteristics of high-power long pulse width quasi-CW laser diode arrays. SPIE, 2014, 5336: 203 http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/22836/203_1.pdf
[8]
Hao M, Liu X, Tan L, et al. Thermal analysis of high power laser diodes by electro-thermal indirect coupling finite-element method. International Conference on Reliability, Maintainability and Safety, 2014: 93 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7107144
[9]
Shi D, Feng S, Qiao Y, et al. The research on temperature distribution of GaN-based blue laser diode. Solid-State Electron, 2015, 109: 25 doi: 10.1016/j.sse.2015.03.006
[10]
Liu J, Feng S, Zhang G, et al. A novel method for measuring the temperature in the active region of semiconductor modules. Chin Phys Lett, 2012, 29: 044401 doi: 10.1088/0256-307X/29/4/044401
[11]
Feng M X, Zhang S M, Jiang D S, et al. Thermal characterization of GaN-based laser diodes by forward-voltage method. J Appl Phys, 2012, 111: 094513 doi: 10.1063/1.4716003
[12]
Szekely V. A new evaluation method of thermal transient measurement results. Microelectron J, 1997, 28: 277 doi: 10.1016/S0026-2692(96)00031-6
[13]
Feng S, Xie X, Lu C, et al. The thermal characterization of packaged semiconductor device. Sixteenth IEEE SEMI-THERMW Symposium, 2000: 220 http://ieeexplore.ieee.org/document/837087/keywords
[14]
Szekely V. On the representation of infinite-length distributed RC one-ports. IEEE Trans Circ Syst, 1991, 38: 711 doi: 10.1109/31.135743
Fig. 1.  (Color online) Schematic of LD structure.

Fig. 2.  LD characteristics at 10 A.

Fig. 3.  Forward voltage at different temperature.

Fig. 4.  Transient heating curve of LD working at 10 A.

Fig. 5.  Differential structure function of LD at 10 A, 25 ℃.

Fig. 6.  Temperature rises of 500 and 800 $\mu $m LDs.

Fig. 7.  Differential structure functions of 500 and 800 $\mu $m LDs.

[1]
Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser. Chin J Lumin 2015, 36(1): 1(in Chinese) http://d-nb.info/977172988/04
[2]
Crump P, Wenzel H, Erbert G, et al. Progress in increasing the maximum achievable output power of broad area diode lasers. SPIE, 2012, 8241: 82410U doi: 10.1117/12.905250
[3]
Pietrzak A, Hülsewede R, Zorn M, et al. Progress in efficiencyoptimized high-power diode lasers. SPIE, 2013, 8898: 889807 http://adsabs.harvard.edu/abs/2013SPIE.8898E..07P
[4]
Li X, Zhang Y, Wang J, et al. Influence of package structure on the performance of the single emitter diode laser. IEEE Trans Compon Packag Manuf Technol, 2012, 2(10): 1592 doi: 10.1109/TCPMT.2012.2207456
[5]
Bao L, Leisher P, Wang J, et al. High reliability and high performance of 9xx nm single emitter laser diodes. SPIE, 2011, 7918: 791806 doi: 10.1117/12.875869
[6]
Feng M X, Zhang S M, Jiang D S, et al. Thermal characterization of GaN-based laser diodes by forward-voltage method. J Appl Phys, 2012, 111(9): 094513 doi: 10.1063/1.4716003
[7]
Byron L M, Farzin A, Nathaniel R B, et al. Thermal characteristics of high-power long pulse width quasi-CW laser diode arrays. SPIE, 2014, 5336: 203 http://proceedings.spiedigitallibrary.org/pdfaccess.ashx?url=/data/conferences/spiep/22836/203_1.pdf
[8]
Hao M, Liu X, Tan L, et al. Thermal analysis of high power laser diodes by electro-thermal indirect coupling finite-element method. International Conference on Reliability, Maintainability and Safety, 2014: 93 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7107144
[9]
Shi D, Feng S, Qiao Y, et al. The research on temperature distribution of GaN-based blue laser diode. Solid-State Electron, 2015, 109: 25 doi: 10.1016/j.sse.2015.03.006
[10]
Liu J, Feng S, Zhang G, et al. A novel method for measuring the temperature in the active region of semiconductor modules. Chin Phys Lett, 2012, 29: 044401 doi: 10.1088/0256-307X/29/4/044401
[11]
Feng M X, Zhang S M, Jiang D S, et al. Thermal characterization of GaN-based laser diodes by forward-voltage method. J Appl Phys, 2012, 111: 094513 doi: 10.1063/1.4716003
[12]
Szekely V. A new evaluation method of thermal transient measurement results. Microelectron J, 1997, 28: 277 doi: 10.1016/S0026-2692(96)00031-6
[13]
Feng S, Xie X, Lu C, et al. The thermal characterization of packaged semiconductor device. Sixteenth IEEE SEMI-THERMW Symposium, 2000: 220 http://ieeexplore.ieee.org/document/837087/keywords
[14]
Szekely V. On the representation of infinite-length distributed RC one-ports. IEEE Trans Circ Syst, 1991, 38: 711 doi: 10.1109/31.135743
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3211 Times PDF downloads: 31 Times Cited by: 0 Times

    History

    Received: 09 October 2016 Revised: 28 November 2016 Online: Published: 01 May 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jichuan Liu, Cuiluan Wang, Suping Liu, Xiaoyu Ma. Thermal investigation of high-power GaAs-based laser diodes[J]. Journal of Semiconductors, 2017, 38(5): 054004. doi: 10.1088/1674-4926/38/5/054004 J C Liu, C L Wang, S P Liu, X Y Ma. Thermal investigation of high-power GaAs-based laser diodes[J]. J. Semicond., 2017, 38(5): 054004. doi: 10.1088/1674-4926/38/5/054004.Export: BibTex EndNote
      Citation:
      Jichuan Liu, Cuiluan Wang, Suping Liu, Xiaoyu Ma. Thermal investigation of high-power GaAs-based laser diodes[J]. Journal of Semiconductors, 2017, 38(5): 054004. doi: 10.1088/1674-4926/38/5/054004

      J C Liu, C L Wang, S P Liu, X Y Ma. Thermal investigation of high-power GaAs-based laser diodes[J]. J. Semicond., 2017, 38(5): 054004. doi: 10.1088/1674-4926/38/5/054004.
      Export: BibTex EndNote

      Thermal investigation of high-power GaAs-based laser diodes

      doi: 10.1088/1674-4926/38/5/054004
      More Information
      • Corresponding author: Wang Cuiluan Email: clwang@semi.ac.cn
      • Received Date: 2016-10-09
      • Revised Date: 2016-11-28
      • Published Date: 2017-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return