REVIEWS

Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics

Daquan Yang1, , Xiao Liu1, Xiaogang Li1, Bing Duan1, Aiqiang Wang1 and Yunfeng Xiao2, 3, 4, 5,

+ Author Affiliations

 Corresponding author: Daquan Yang, Email: ydq@bupt.edu.cn; Yunfeng Xiao, yfxiao@pku.edu.cn

PDF

Turn off MathJax

Abstract: Integrated circuit (IC) industry has fully considered the fact that the Moore’s Law is slowing down or ending. Alternative solutions are highly and urgently desired to break the physical size limits in the More-than-Moore era. Integrated silicon photonics technology exhibits distinguished potential to achieve faster operation speed, less power dissipation, and lower cost in IC industry, because their COMS compatibility, fast response, and high monolithic integration capability. Particularly, compared with other on-chip resonators (e.g. microrings, 2D photonic crystal cavities) silicon-on-insulator (SOI)-based photonic crystal nanobeam cavity (PCNC) has emerged as a promising platform for on-chip integration, due to their attractive properties of ultra-high Q/V, ultra-compact footprints and convenient integration with silicon bus-waveguides. In this paper, we present a comprehensive review on recent progress of on-chip PCNC devices for lasing, modulation, switching/filting and label-free sensing, etc.

Key words: PCNCintegrated silicon photonicsMore-than-Moorelab-on-a-chiphybrid devices



[1]
Shalf J M, Leland R. Computing beyond Moore's law. Computer, 2015, 48, 14 doi: 10.1109/MC.2015.374
[2]
Liu M S, Liu Y, Wang H J, et al. Design of GeSn-based heterojunction-enhanced N-channel tunneling FET with improved subthreshold swing and ON-state current. IEEE Trans Electron Devices, 2015, 62, 1262 doi: 10.1109/TED.2015.2403571
[3]
Yue Y Z, Hao Y, Zhang J C, et al. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett, 2008, 29, 838 doi: 10.1109/LED.2008.2000949
[4]
Markov I L. Limits on fundamental limits to computation. Nature, 2014, 512, 147 doi: 10.1038/nature13570
[5]
Wesling P. The Heterogeneous integration roadmap: Enabling technology for systems of the future. 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 2020, 1
[6]
Shalf J. The future of computing beyond Moore's Law. Phil Trans Royal Soc A, 2020, 378, 20190061 doi: 10.1098/rsta.2019.0061
[7]
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106 doi: 10.1038/s41586-019-1424-8
[8]
Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10, 190 doi: 10.1038/nphoton.2015.281
[9]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[10]
Dai D X, Yin Y L, Yu L H, et al. Silicon-plus photonics. Front Optoelectron, 2016, 9, 436 doi: 10.1007/s12200-016-0629-9
[11]
Shi Y C, Chen J Y, Xu H N. Silicon-based on-chip diplexing/triplexing technologies and devices. Sci China Inf Sci, 2018, 61, 080402 doi: 10.1007/s11432-018-9390-0
[12]
Guo J S, Dai D X. Silicon nanophotonics for on-chip light manipulation. Chin Phys B, 2018, 27, 104208 doi: 10.1088/1674-1056/27/10/104208
[13]
Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photon, 2007, 1, 232 doi: 10.1038/nphoton.2007.29
[14]
Sun X C, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16, 124 doi: 10.1109/JSTQE.2009.2027445
[15]
Duan G H, Jany C, Le Liepvre A, et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Top Quantum Electron, 2014, 20, 158 doi: 10.1109/JSTQE.2013.2296752
[16]
Yang Y C, Gao P, Li L Z, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5, 4232 doi: 10.1038/ncomms5232
[17]
Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photon, 2016, 10, 420 doi: 10.1038/nphoton.2016.70
[18]
Chen B G, Wu H, Xin C G, et al. Flexible integration of free-standing nanowires into silicon photonics. Nat Commun, 2017, 8, 20 doi: 10.1038/s41467-017-00038-0
[19]
Liu J L, Xu G M, Liu F G, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784 doi: 10.1039/C4RA13250E
[20]
Joyce H J, Gao Q, Hoe Tan H, et al. III –V semiconductor nanowires for optoelectronic device applications. Prog Quantum Electron, 2011, 35, 23 doi: 10.1016/j.pquantelec.2011.03.002
[21]
Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12, 1124 doi: 10.1038/nnano.2017.209
[22]
Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474, 64 doi: 10.1038/nature10067
[23]
Vahala K J. Optical microcavities. Nature, 2003, 424, 839 doi: 10.1038/nature01939
[24]
Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci China Phys Mech Astron, 2019, 62, 74231 doi: 10.1007/s11433-018-9349-2
[25]
Deotare P B, McCutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities. Appl Phys Lett, 2009, 94, 121106 doi: 10.1063/1.3107263
[26]
Quan Q M, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 2010, 96, 203102 doi: 10.1063/1.3429125
[27]
Zhang Y, Khan M, Huang Y, et al. Photonic crystal nanobeam lasers. Appl Phys Lett, 2010, 97, 051104 doi: 10.1063/1.3475397
[28]
Ahn B H, Kang J H, Kim M K, et al. One-dimensional parabolic-beam photonic crystal laser. Opt Express, 2010, 18, 5654 doi: 10.1364/OE.18.005654
[29]
Gong Y Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18, 8781 doi: 10.1364/OE.18.008781
[30]
Lu T W, Chiu L H, Lin P T, et al. One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl Phys Lett, 2011, 99, 071101 doi: 10.1063/1.3626592
[31]
Fegadolli W S, Kim S H, Postigo P A, et al. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics. Opt Lett, 2013, 38, 4656 doi: 10.1364/OL.38.004656
[32]
Lee P T, Lu T W, Chiu L H. Dielectric-band photonic crystal nanobeam lasers. J Lightwave Technol, 2013, 31, 36 doi: 10.1109/JLT.2012.2229695
[33]
Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822 doi: 10.1038/ncomms3822
[34]
Niu N, Woolf A, Wang D Q, et al. Ultra-low threshold gallium nitride photonic crystal nanobeam laser. Appl Phys Lett, 2015, 106, 231104 doi: 10.1063/1.4922211
[35]
Triviño N V, Butté R, Carlin J F, et al. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett, 2015, 15, 1259 doi: 10.1021/nl504432d
[36]
Yang Z L, Pelton M, Fedin I, et al. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat Commun, 2017, 8, 143 doi: 10.1038/s41467-017-00198-z
[37]
Lee J, Karnadi I, Kim J T, et al. Printed nanolaser on silicon. ACS Photonics, 2017, 4, 2117 doi: 10.1021/acsphotonics.7b00488
[38]
Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotech, 2017, 12, 987 doi: 10.1038/nnano.2017.128
[39]
Jagsch S T, Triviño N V, Lohof F, et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat Commun, 2018, 9, 564 doi: 10.1038/s41467-018-02999-2
[40]
He Z, Chen B, Hua Y, et al. CMOS compatible high-performance nanolasing based on perovskite-SiN hybrid integration. Adv Opt Mater, 2020, 8, 2000453 doi: 10.1002/adom.202000453
[41]
Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69 doi: 10.1038/nature14290
[42]
Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material. Nature, 2006, 441, 199 doi: 10.1038/nature04706
[43]
Hochberg M, Baehr-Jones T, Wang G X, et al. Terahertz all-optical modulation in a silicon–polymer hybrid system. Nat Mater, 2006, 5, 703 doi: 10.1038/nmat1719
[44]
Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23, 123 doi: 10.1109/JQE.1987.1073206
[45]
Qi B, Yu P, Li Y B, et al. Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. IEEE Photon Technol Lett, 2011, 23, 992 doi: 10.1109/LPT.2011.2148704
[46]
Javid M R, Miri M, Zarifkar A. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt Commun, 2018, 410, 652 doi: 10.1016/j.optcom.2017.11.016
[47]
Hendrickson J, Soref R, Sweet J, et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Opt Express, 2014, 22, 3271 doi: 10.1364/OE.22.003271
[48]
Shakoor A, Nozaki K, Kuramochi E, et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 2014, 22, 28623 doi: 10.1364/OE.22.028623
[49]
Jafari Z, Zarifkar A, Miri M, et al. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J Lightwave Technol, 2018, 36, 4051 doi: 10.1109/JLT.2018.2858551
[50]
Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12, 1482 doi: 10.1021/nl204202k
[51]
Qiu C Y, Gao W L, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14, 6811 doi: 10.1021/nl502363u
[52]
Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett, 2014, 26, 2008 doi: 10.1109/LPT.2014.2344041
[53]
Pan T, Qiu C Y, Wu J Y, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt Express, 2015, 23, 23357 doi: 10.1364/OE.23.023357
[54]
Liu H Q, Liu P G, Bian L A, et al. Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/ Al2O3 multilayer stack. Opt Mater Express, 2018, 8, 761 doi: 10.1364/OME.8.000761
[55]
Inoue S I, Otomo A. Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides. Appl Phys Lett, 2013, 103, 171101 doi: 10.1063/1.4824421
[56]
Yan H, Xu X C, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466 doi: 10.1364/OL.41.005466
[57]
Witmer J D, Hill J T, Safavi-Naeini A H. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform. Opt Express, 2016, 24, 5876 doi: 10.1364/OE.24.005876
[58]
Witmer J D, Valery J A, Arrangoiz-Arriola P, et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 2017, 7, 46313 doi: 10.1038/srep46313
[59]
Fegadolli W S, Oliveira J E B, Almeida V R, et al. Compact and low power consumption tunable photonic crystal nanobeam cavity. Opt Express, 2013, 21, 3861 doi: 10.1364/OE.21.003861
[60]
Hadian Siahkal-Mahalle B, Abedi K. Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal. Opt Quant Electron, 2019, 51, 128 doi: 10.1007/s11082-019-1835-7
[61]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351 doi: 10.1016/j.ssc.2008.02.024
[62]
Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101, 196405 doi: 10.1103/PhysRevLett.101.196405
[63]
Yin Y W, Proietti R, Ye X H, et al. LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J Sel Top Quantum Electron, 2013, 19, 3600409 doi: 10.1109/JSTQE.2012.2209174
[64]
Chen K, Singla A, Singh A, et al. OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans Networking, 2014, 22, 498 doi: 10.1109/TNET.2013.2253120
[65]
Qiu C Y, Gao W L, Soref R, et al. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators. Opt Lett, 2014, 39, 6767 doi: 10.1364/OL.39.006767
[66]
Lira H L R, Manipatruni S, Lipson M. Broadband hitless silicon electro-optic switch for on-chip optical networks. Opt Express, 2009, 17, 22271 doi: 10.1364/OE.17.022271
[67]
Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18, 25225 doi: 10.1364/OE.18.025225
[68]
Zhou H Y, Qiu C Y, Xu Z Z, et al. A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes. 2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016, 10
[69]
Zhou H Y, Qiu C Y, Jiang X H, et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon Res, 2017, 5, 108 doi: 10.1364/PRJ.5.000108
[70]
Cheng Z W, Dong J J, Zhang X L. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett, 2020, 45, 2363 doi: 10.1364/OL.383250
[71]
Soref R, Hendrickson J. Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing. Opt Express, 2015, 23, 32582 doi: 10.1364/OE.23.032582
[72]
Soref R, Hendrickson J R, Sweet J. Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region. Opt Express, 2016, 24, 9369 doi: 10.1364/OE.24.009369
[73]
Zhou H Y, Qiu C Y, Wu J Y, et al. 2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Conference on Lasers and Electro-Optics, 2016, JTh2A.105
[74]
Bazin A, Lenglé K, Gay M, et al. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl Phys Lett, 2014, 104, 011102 doi: 10.1063/1.4861121
[75]
Dong G N, Deng W T, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630 doi: 10.1364/OE.26.025630
[76]
Meng Z M, Chen C B, Qin F. Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy. J Phys D, 2020, 53, 205105 doi: 10.1088/1361-6463/ab768c
[77]
Liu Y, Qin F, Meng Z M, et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express, 2011, 19, 1945 doi: 10.1364/OE.19.001945
[78]
Lengle K, Nguyen T N, Gay M, et al. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Opt Lett, 2014, 39, 2298 doi: 10.1364/OL.39.002298
[79]
Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon Technol Lett, 2010, 22, 1762 doi: 10.1109/LPT.2010.2084566
[80]
Dong G N, Wang Y L, Zhang X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt Lett, 2018, 43, 5977 doi: 10.1364/OL.43.005977
[81]
Meng Z M, Hu Y H, Wang C, et al. Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching. Photonics Nanostruct, 2014, 12, 83 doi: 10.1016/j.photonics.2013.08.003
[82]
Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photon, 2011, 5, 268 doi: 10.1038/nphoton.2011.68
[83]
Pan J, Huo Y J, Yamanaka K, et al. Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning. Appl Phys Lett, 2008, 92, 103114 doi: 10.1063/1.2896615
[84]
Eichenfield M, Camacho R, Chan J, et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550 doi: 10.1038/nature08061
[85]
Li M, Pernice W H P, Tang H X. Tunable bipolar optical interactions between guided lightwaves. Nat Photon, 2009, 3, 464 doi: 10.1038/nphoton.2009.116
[86]
Gu L L, Jiang W, Chen X N, et al. Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers. IEEE Photon Technol Lett, 2007, 19, 342 doi: 10.1109/LPT.2007.891245
[87]
Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon Technol Lett, 2003, 15, 1366 doi: 10.1109/LPT.2003.818246
[88]
Dong P, Qian W, Liang H, et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express, 2010, 18, 20298 doi: 10.1364/OE.18.020298
[89]
Zhang Y, He Y, Zhu Q M, et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 2018, 43, 4518 doi: 10.1364/OL.43.004518
[90]
Matsko A B. Practical applications of microresonators in optics and photonics. London: CRC Press, 2009
[91]
Fan X D. Advanced photonic structures for biological and chemical detection. New York: Springer New York, 2009
[92]
Sharma A, Xie S R, Zeltner R, et al. On-the-fly particle metrology in hollow-core photonic crystal fibre. Opt Express, 2019, 27, 34496 doi: 10.1364/OE.27.034496
[93]
Xiao Y F, Gong Q H. Optical microcavity: From fundamental physics to functional photonics devices. Sci Bull, 2016, 61, 185 doi: 10.1007/s11434-016-0996-z
[94]
Zhi Y Y, Yu X C, Gong Q H, et al. Single nanoparticle detection using optical microcavities. Adv Mater, 2017, 29, 1604920 doi: 10.1002/adma.201604920
[95]
Shao L B, Jiang X F, Yu X C, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013, 25, 5616 doi: 10.1002/adma201302572
[96]
Li B B, Clements W R, Yu X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers. PNAS, 2014, 111, 14657 doi: 10.1073/pnas.1408453111
[97]
Yang D Q, Wang A Q, Chen J H, et al. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Res, 2020, 8, 497 doi: 10.1364/PRJ.380238
[98]
Yang D Q, Duan B, Liu X, et al. Photonic crystal nanobeam cavities for nanoscale optical sensing: A review. Micromachines, 2020, 11, 72 doi: 10.3390/mi11010072
[99]
Quan Q M, Floyd D L, Burgess I B, et al. Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt Express, 2013, 21, 32225 doi: 10.1364/OE.21.032225
[100]
Rahman M G A, Velha P, de la Rue R M, et al. Silicon-on-insulator (SOI) nanobeam optical cavities for refractive index based sensing. Opt Sens Detect II, 2012, 8439, 84391Q doi: 10.1117/12.922554
[101]
Yao K Y, Shi Y C. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing. Opt Express, 2012, 20, 27039 doi: 10.1364/OE.20.027039
[102]
Quan Q M, Burgess I B, Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 2011, 19, 22191 doi: 10.1364/OE.19.022191
[103]
Xu P P, Yao K Y, Zheng J J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Opt Express, 2013, 21, 26908 doi: 10.1364/OE.21.026908
[104]
Yang D Q, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl Phys Lett, 2014, 105, 063118 doi: 10.1063/1.4867254
[105]
Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt Lett, 2015, 40, 5351 doi: 10.1364/OL.40.005351
[106]
Rodriguez G A, Markov P, Cartwright A P, et al. Photonic crystal nanobeam biosensors based on porous silicon. Opt Express, 2019, 27, 9536 doi: 10.1364/OE.27.009536
[107]
Gopinath A, Miyazono E, Faraon A, et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 401 doi: 10.1038/nature18287
[108]
Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Opt Express, 2008, 16, 1623 doi: 10.1364/OE.16.001623
[109]
Yang D Q, Wang C, Ji Y F. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Opt Express, 2016, 24, 16267 doi: 10.1364/OE.24.016267
[110]
Hagino H, Takahashi Y, Tanaka Y, et al. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys Rev B, 2009, 79, 085112 doi: 10.1103/PhysRevB.79.085112
[111]
Afzal F O, Halimi S I, Weiss S M. Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. J Opt Soc Am B, 2019, 36, 585 doi: 10.1364/JOSAB.36.000585
[112]
Liang F, Clarke N, Patel P, et al. Scalable photonic crystal chips for high sensitivity protein detection. Opt Express, 2013, 21, 32306 doi: 10.1364/OE.21.032306
[113]
Frank I W, Deotare P B, McCutcheon M W, et al. Programmable photonic crystal nanobeam cavities. Opt Express, 2010, 18, 8705 doi: 10.1364/OE.18.008705
[114]
Panettieri D, O'Faolain L, Grande M. Control of Q-factor in nanobeam cavities on substrate. 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, 1
[115]
Xiong Y L, Wangüemert-Pérez J G, Xu D X, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett, 2014, 39, 6931 doi: 10.1364/OL.39.006931
Fig. 1.  (Color online) (a) Number and size of transistors bought per dollar. Source: The end of Moore’s law. The Economist, April, 2015. (b) The ITRS most recent report predicts transistor scaling will end in 2021. Source: International Semiconductor Technology Roadmap (ITRS).

Fig. 2.  (Color online) (a) The development trend of the semiconductor industry in the More-than-Moore Era. Source: International Semiconductor Technology Roadmap (ITRS). (b) Silicon photonics 2015–2024 market forecast. Source: Silicon Photonics Report Yole Développement.

Fig. 3.  (Color online) A summary of PCNC lasers (2010–2018). Insets show the device structures, materials, and threshold power, respectively.

Fig. 4.  (Color online) (a) Schematic and (b) SEM of the proposed hybrid III−V/Si nanolaser attached to a conventional silicon-on-insulator (SOI) waveguide. (c) Measured output power near the end of the SOI waveguide (black) and near the InGaAsP nanobeam (red) against incident peak pump power. The inset shows a lasing emission spectrum near 1550 nm.

Fig. 5.  (Color online) (a) Schematic of the proposed room temperature, suspended silicon nanobeam laser with a monolayer MoTe2 on top. The corresponding lasing spectra of the nanobeam laser under different pump power levels (b) using a grating resolution: 150 g/mm (0.41 nm), and (c) using a grating resolution: 600 g/mm (0.09 nm).

Fig. 6.  (Color online) (a) Schematic of the proposed TO tunable nanobeam filter. (b) SEM image of the fabricated PCNC filter. (c) Measured wavelength shifts against heating powers.

Fig. 7.  (Color online) (a) SEM image of the proposed parallel quadrabeam PCNCs. (b) Real-time monitoring of streptavidin/biotin binding. Inset: resonance shift as a function of streptavidin concentration in PBS. (c) Resonance shifts as a function of the refractive indices with different concentrations ethanol/water solutions. (d) SEM of nanoscale sensor array. (e) Red shift of the targeted resonator occurs because of the higher refractive index of the CaCl2 solution. (f) Experimental data showing the redshifts for various refractive index solutions.

Table 1.   Comparison with PCNC-based modulators.

StructureMaterialDevice footprint (μm2)Modulation voltage (V)Modulation speed (GHz)Extinction ratio (dB)Energy consumption (J/bit)Year
Si-polymer7.70.286132011[45]
Si200.110–5100.52013[59]
Si40.622061.4 × 10–172014[47]
Si711.334.2 × 10–142014[48]
Si-graphene20−6.413312.56 × 10–132015[53]
Si-polymer3.6122410.97.5 × 10–162018[46]
Si- ITO1.8920.1119.893.4845.9 × 10–192019[60]
DownLoad: CSV

Table 2.   Comparison with PCNC-based optical switches.

PrincipleStructureMaterialDevice footprint (μm2)Switching powerExtinction ratio (dB)Insertion loss (dB)Year
Thermo-optic effectSi1 mW150.662016[68]
Si45000.16 mW151.52017[69]
Si141.52020[70]
Electro-optic effectSi474 aJ/bit22015[71]
Ge-on-Si3N48 pJ/bit60.972016[72]
Si2002.6 fJ/bit14.21.22016[73]
Kerr nonlinearityInP106 mW3.62014[74]
Si311.6 pJ2442018[75]
Si+polymer160.76 pJ2020[76]
DownLoad: CSV

Table 3.   Comparison with PCNC-based optical sensors.

StructureMaterialSensitivity (nm/RIU)QDetection limitYear
Si83350002 pM2013[99]
Si200200002012[100]
Si269270002012[101]
Polymer3863600010 mg/dL2011[102]
Si410~100002013[103]
Si451701510 ag/mL2014[104]
InGaAsP461~100002015[105]
Porous Si102390001.6 pm/nM2019[106]
DownLoad: CSV
[1]
Shalf J M, Leland R. Computing beyond Moore's law. Computer, 2015, 48, 14 doi: 10.1109/MC.2015.374
[2]
Liu M S, Liu Y, Wang H J, et al. Design of GeSn-based heterojunction-enhanced N-channel tunneling FET with improved subthreshold swing and ON-state current. IEEE Trans Electron Devices, 2015, 62, 1262 doi: 10.1109/TED.2015.2403571
[3]
Yue Y Z, Hao Y, Zhang J C, et al. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett, 2008, 29, 838 doi: 10.1109/LED.2008.2000949
[4]
Markov I L. Limits on fundamental limits to computation. Nature, 2014, 512, 147 doi: 10.1038/nature13570
[5]
Wesling P. The Heterogeneous integration roadmap: Enabling technology for systems of the future. 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 2020, 1
[6]
Shalf J. The future of computing beyond Moore's Law. Phil Trans Royal Soc A, 2020, 378, 20190061 doi: 10.1098/rsta.2019.0061
[7]
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106 doi: 10.1038/s41586-019-1424-8
[8]
Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10, 190 doi: 10.1038/nphoton.2015.281
[9]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[10]
Dai D X, Yin Y L, Yu L H, et al. Silicon-plus photonics. Front Optoelectron, 2016, 9, 436 doi: 10.1007/s12200-016-0629-9
[11]
Shi Y C, Chen J Y, Xu H N. Silicon-based on-chip diplexing/triplexing technologies and devices. Sci China Inf Sci, 2018, 61, 080402 doi: 10.1007/s11432-018-9390-0
[12]
Guo J S, Dai D X. Silicon nanophotonics for on-chip light manipulation. Chin Phys B, 2018, 27, 104208 doi: 10.1088/1674-1056/27/10/104208
[13]
Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photon, 2007, 1, 232 doi: 10.1038/nphoton.2007.29
[14]
Sun X C, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16, 124 doi: 10.1109/JSTQE.2009.2027445
[15]
Duan G H, Jany C, Le Liepvre A, et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Top Quantum Electron, 2014, 20, 158 doi: 10.1109/JSTQE.2013.2296752
[16]
Yang Y C, Gao P, Li L Z, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5, 4232 doi: 10.1038/ncomms5232
[17]
Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photon, 2016, 10, 420 doi: 10.1038/nphoton.2016.70
[18]
Chen B G, Wu H, Xin C G, et al. Flexible integration of free-standing nanowires into silicon photonics. Nat Commun, 2017, 8, 20 doi: 10.1038/s41467-017-00038-0
[19]
Liu J L, Xu G M, Liu F G, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784 doi: 10.1039/C4RA13250E
[20]
Joyce H J, Gao Q, Hoe Tan H, et al. III –V semiconductor nanowires for optoelectronic device applications. Prog Quantum Electron, 2011, 35, 23 doi: 10.1016/j.pquantelec.2011.03.002
[21]
Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12, 1124 doi: 10.1038/nnano.2017.209
[22]
Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474, 64 doi: 10.1038/nature10067
[23]
Vahala K J. Optical microcavities. Nature, 2003, 424, 839 doi: 10.1038/nature01939
[24]
Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci China Phys Mech Astron, 2019, 62, 74231 doi: 10.1007/s11433-018-9349-2
[25]
Deotare P B, McCutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities. Appl Phys Lett, 2009, 94, 121106 doi: 10.1063/1.3107263
[26]
Quan Q M, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 2010, 96, 203102 doi: 10.1063/1.3429125
[27]
Zhang Y, Khan M, Huang Y, et al. Photonic crystal nanobeam lasers. Appl Phys Lett, 2010, 97, 051104 doi: 10.1063/1.3475397
[28]
Ahn B H, Kang J H, Kim M K, et al. One-dimensional parabolic-beam photonic crystal laser. Opt Express, 2010, 18, 5654 doi: 10.1364/OE.18.005654
[29]
Gong Y Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18, 8781 doi: 10.1364/OE.18.008781
[30]
Lu T W, Chiu L H, Lin P T, et al. One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl Phys Lett, 2011, 99, 071101 doi: 10.1063/1.3626592
[31]
Fegadolli W S, Kim S H, Postigo P A, et al. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics. Opt Lett, 2013, 38, 4656 doi: 10.1364/OL.38.004656
[32]
Lee P T, Lu T W, Chiu L H. Dielectric-band photonic crystal nanobeam lasers. J Lightwave Technol, 2013, 31, 36 doi: 10.1109/JLT.2012.2229695
[33]
Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822 doi: 10.1038/ncomms3822
[34]
Niu N, Woolf A, Wang D Q, et al. Ultra-low threshold gallium nitride photonic crystal nanobeam laser. Appl Phys Lett, 2015, 106, 231104 doi: 10.1063/1.4922211
[35]
Triviño N V, Butté R, Carlin J F, et al. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett, 2015, 15, 1259 doi: 10.1021/nl504432d
[36]
Yang Z L, Pelton M, Fedin I, et al. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat Commun, 2017, 8, 143 doi: 10.1038/s41467-017-00198-z
[37]
Lee J, Karnadi I, Kim J T, et al. Printed nanolaser on silicon. ACS Photonics, 2017, 4, 2117 doi: 10.1021/acsphotonics.7b00488
[38]
Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotech, 2017, 12, 987 doi: 10.1038/nnano.2017.128
[39]
Jagsch S T, Triviño N V, Lohof F, et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat Commun, 2018, 9, 564 doi: 10.1038/s41467-018-02999-2
[40]
He Z, Chen B, Hua Y, et al. CMOS compatible high-performance nanolasing based on perovskite-SiN hybrid integration. Adv Opt Mater, 2020, 8, 2000453 doi: 10.1002/adom.202000453
[41]
Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69 doi: 10.1038/nature14290
[42]
Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material. Nature, 2006, 441, 199 doi: 10.1038/nature04706
[43]
Hochberg M, Baehr-Jones T, Wang G X, et al. Terahertz all-optical modulation in a silicon–polymer hybrid system. Nat Mater, 2006, 5, 703 doi: 10.1038/nmat1719
[44]
Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23, 123 doi: 10.1109/JQE.1987.1073206
[45]
Qi B, Yu P, Li Y B, et al. Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. IEEE Photon Technol Lett, 2011, 23, 992 doi: 10.1109/LPT.2011.2148704
[46]
Javid M R, Miri M, Zarifkar A. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt Commun, 2018, 410, 652 doi: 10.1016/j.optcom.2017.11.016
[47]
Hendrickson J, Soref R, Sweet J, et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Opt Express, 2014, 22, 3271 doi: 10.1364/OE.22.003271
[48]
Shakoor A, Nozaki K, Kuramochi E, et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 2014, 22, 28623 doi: 10.1364/OE.22.028623
[49]
Jafari Z, Zarifkar A, Miri M, et al. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J Lightwave Technol, 2018, 36, 4051 doi: 10.1109/JLT.2018.2858551
[50]
Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12, 1482 doi: 10.1021/nl204202k
[51]
Qiu C Y, Gao W L, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14, 6811 doi: 10.1021/nl502363u
[52]
Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett, 2014, 26, 2008 doi: 10.1109/LPT.2014.2344041
[53]
Pan T, Qiu C Y, Wu J Y, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt Express, 2015, 23, 23357 doi: 10.1364/OE.23.023357
[54]
Liu H Q, Liu P G, Bian L A, et al. Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/ Al2O3 multilayer stack. Opt Mater Express, 2018, 8, 761 doi: 10.1364/OME.8.000761
[55]
Inoue S I, Otomo A. Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides. Appl Phys Lett, 2013, 103, 171101 doi: 10.1063/1.4824421
[56]
Yan H, Xu X C, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466 doi: 10.1364/OL.41.005466
[57]
Witmer J D, Hill J T, Safavi-Naeini A H. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform. Opt Express, 2016, 24, 5876 doi: 10.1364/OE.24.005876
[58]
Witmer J D, Valery J A, Arrangoiz-Arriola P, et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 2017, 7, 46313 doi: 10.1038/srep46313
[59]
Fegadolli W S, Oliveira J E B, Almeida V R, et al. Compact and low power consumption tunable photonic crystal nanobeam cavity. Opt Express, 2013, 21, 3861 doi: 10.1364/OE.21.003861
[60]
Hadian Siahkal-Mahalle B, Abedi K. Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal. Opt Quant Electron, 2019, 51, 128 doi: 10.1007/s11082-019-1835-7
[61]
Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351 doi: 10.1016/j.ssc.2008.02.024
[62]
Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101, 196405 doi: 10.1103/PhysRevLett.101.196405
[63]
Yin Y W, Proietti R, Ye X H, et al. LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J Sel Top Quantum Electron, 2013, 19, 3600409 doi: 10.1109/JSTQE.2012.2209174
[64]
Chen K, Singla A, Singh A, et al. OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans Networking, 2014, 22, 498 doi: 10.1109/TNET.2013.2253120
[65]
Qiu C Y, Gao W L, Soref R, et al. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators. Opt Lett, 2014, 39, 6767 doi: 10.1364/OL.39.006767
[66]
Lira H L R, Manipatruni S, Lipson M. Broadband hitless silicon electro-optic switch for on-chip optical networks. Opt Express, 2009, 17, 22271 doi: 10.1364/OE.17.022271
[67]
Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18, 25225 doi: 10.1364/OE.18.025225
[68]
Zhou H Y, Qiu C Y, Xu Z Z, et al. A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes. 2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016, 10
[69]
Zhou H Y, Qiu C Y, Jiang X H, et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon Res, 2017, 5, 108 doi: 10.1364/PRJ.5.000108
[70]
Cheng Z W, Dong J J, Zhang X L. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett, 2020, 45, 2363 doi: 10.1364/OL.383250
[71]
Soref R, Hendrickson J. Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing. Opt Express, 2015, 23, 32582 doi: 10.1364/OE.23.032582
[72]
Soref R, Hendrickson J R, Sweet J. Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region. Opt Express, 2016, 24, 9369 doi: 10.1364/OE.24.009369
[73]
Zhou H Y, Qiu C Y, Wu J Y, et al. 2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Conference on Lasers and Electro-Optics, 2016, JTh2A.105
[74]
Bazin A, Lenglé K, Gay M, et al. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl Phys Lett, 2014, 104, 011102 doi: 10.1063/1.4861121
[75]
Dong G N, Deng W T, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630 doi: 10.1364/OE.26.025630
[76]
Meng Z M, Chen C B, Qin F. Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy. J Phys D, 2020, 53, 205105 doi: 10.1088/1361-6463/ab768c
[77]
Liu Y, Qin F, Meng Z M, et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express, 2011, 19, 1945 doi: 10.1364/OE.19.001945
[78]
Lengle K, Nguyen T N, Gay M, et al. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Opt Lett, 2014, 39, 2298 doi: 10.1364/OL.39.002298
[79]
Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon Technol Lett, 2010, 22, 1762 doi: 10.1109/LPT.2010.2084566
[80]
Dong G N, Wang Y L, Zhang X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt Lett, 2018, 43, 5977 doi: 10.1364/OL.43.005977
[81]
Meng Z M, Hu Y H, Wang C, et al. Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching. Photonics Nanostruct, 2014, 12, 83 doi: 10.1016/j.photonics.2013.08.003
[82]
Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photon, 2011, 5, 268 doi: 10.1038/nphoton.2011.68
[83]
Pan J, Huo Y J, Yamanaka K, et al. Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning. Appl Phys Lett, 2008, 92, 103114 doi: 10.1063/1.2896615
[84]
Eichenfield M, Camacho R, Chan J, et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550 doi: 10.1038/nature08061
[85]
Li M, Pernice W H P, Tang H X. Tunable bipolar optical interactions between guided lightwaves. Nat Photon, 2009, 3, 464 doi: 10.1038/nphoton.2009.116
[86]
Gu L L, Jiang W, Chen X N, et al. Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers. IEEE Photon Technol Lett, 2007, 19, 342 doi: 10.1109/LPT.2007.891245
[87]
Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon Technol Lett, 2003, 15, 1366 doi: 10.1109/LPT.2003.818246
[88]
Dong P, Qian W, Liang H, et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express, 2010, 18, 20298 doi: 10.1364/OE.18.020298
[89]
Zhang Y, He Y, Zhu Q M, et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 2018, 43, 4518 doi: 10.1364/OL.43.004518
[90]
Matsko A B. Practical applications of microresonators in optics and photonics. London: CRC Press, 2009
[91]
Fan X D. Advanced photonic structures for biological and chemical detection. New York: Springer New York, 2009
[92]
Sharma A, Xie S R, Zeltner R, et al. On-the-fly particle metrology in hollow-core photonic crystal fibre. Opt Express, 2019, 27, 34496 doi: 10.1364/OE.27.034496
[93]
Xiao Y F, Gong Q H. Optical microcavity: From fundamental physics to functional photonics devices. Sci Bull, 2016, 61, 185 doi: 10.1007/s11434-016-0996-z
[94]
Zhi Y Y, Yu X C, Gong Q H, et al. Single nanoparticle detection using optical microcavities. Adv Mater, 2017, 29, 1604920 doi: 10.1002/adma.201604920
[95]
Shao L B, Jiang X F, Yu X C, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013, 25, 5616 doi: 10.1002/adma201302572
[96]
Li B B, Clements W R, Yu X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers. PNAS, 2014, 111, 14657 doi: 10.1073/pnas.1408453111
[97]
Yang D Q, Wang A Q, Chen J H, et al. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Res, 2020, 8, 497 doi: 10.1364/PRJ.380238
[98]
Yang D Q, Duan B, Liu X, et al. Photonic crystal nanobeam cavities for nanoscale optical sensing: A review. Micromachines, 2020, 11, 72 doi: 10.3390/mi11010072
[99]
Quan Q M, Floyd D L, Burgess I B, et al. Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt Express, 2013, 21, 32225 doi: 10.1364/OE.21.032225
[100]
Rahman M G A, Velha P, de la Rue R M, et al. Silicon-on-insulator (SOI) nanobeam optical cavities for refractive index based sensing. Opt Sens Detect II, 2012, 8439, 84391Q doi: 10.1117/12.922554
[101]
Yao K Y, Shi Y C. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing. Opt Express, 2012, 20, 27039 doi: 10.1364/OE.20.027039
[102]
Quan Q M, Burgess I B, Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 2011, 19, 22191 doi: 10.1364/OE.19.022191
[103]
Xu P P, Yao K Y, Zheng J J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Opt Express, 2013, 21, 26908 doi: 10.1364/OE.21.026908
[104]
Yang D Q, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl Phys Lett, 2014, 105, 063118 doi: 10.1063/1.4867254
[105]
Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt Lett, 2015, 40, 5351 doi: 10.1364/OL.40.005351
[106]
Rodriguez G A, Markov P, Cartwright A P, et al. Photonic crystal nanobeam biosensors based on porous silicon. Opt Express, 2019, 27, 9536 doi: 10.1364/OE.27.009536
[107]
Gopinath A, Miyazono E, Faraon A, et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 401 doi: 10.1038/nature18287
[108]
Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Opt Express, 2008, 16, 1623 doi: 10.1364/OE.16.001623
[109]
Yang D Q, Wang C, Ji Y F. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Opt Express, 2016, 24, 16267 doi: 10.1364/OE.24.016267
[110]
Hagino H, Takahashi Y, Tanaka Y, et al. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys Rev B, 2009, 79, 085112 doi: 10.1103/PhysRevB.79.085112
[111]
Afzal F O, Halimi S I, Weiss S M. Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. J Opt Soc Am B, 2019, 36, 585 doi: 10.1364/JOSAB.36.000585
[112]
Liang F, Clarke N, Patel P, et al. Scalable photonic crystal chips for high sensitivity protein detection. Opt Express, 2013, 21, 32306 doi: 10.1364/OE.21.032306
[113]
Frank I W, Deotare P B, McCutcheon M W, et al. Programmable photonic crystal nanobeam cavities. Opt Express, 2010, 18, 8705 doi: 10.1364/OE.18.008705
[114]
Panettieri D, O'Faolain L, Grande M. Control of Q-factor in nanobeam cavities on substrate. 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, 1
[115]
Xiong Y L, Wangüemert-Pérez J G, Xu D X, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett, 2014, 39, 6931 doi: 10.1364/OL.39.006931
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4991 Times PDF downloads: 274 Times Cited by: 0 Times

    History

    Received: 27 May 2020 Revised: 06 August 2020 Online: Accepted Manuscript: 21 September 2020Uncorrected proof: 25 September 2020Published: 08 February 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics[J]. Journal of Semiconductors, 2021, 42(2): 023103. doi: 10.1088/1674-4926/42/2/023103 D Q Yang, X Liu, X G Li, B Duan, A Q Wang, Y F Xiao, Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics[J]. J. Semicond., 2021, 42(2): 023103. doi: 10.1088/1674-4926/42/2/023103.Export: BibTex EndNote
      Citation:
      Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics[J]. Journal of Semiconductors, 2021, 42(2): 023103. doi: 10.1088/1674-4926/42/2/023103

      D Q Yang, X Liu, X G Li, B Duan, A Q Wang, Y F Xiao, Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics[J]. J. Semicond., 2021, 42(2): 023103. doi: 10.1088/1674-4926/42/2/023103.
      Export: BibTex EndNote

      Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics

      doi: 10.1088/1674-4926/42/2/023103
      More Information
      • Author Bio:

        Daquan Yang received the B.S. degree in electronic information science and technology from the University of Jinan in 2005, and the Ph.D. degree in Information and Communication Engineering from Beijing University of Posts and Telecommunications in 2014, respectively. During his Ph. D., he joined the school of engineering and applied science at the Harvard University as a visiting follow for two years. Then, he joined the faculty of Beijing University of Posts and Telecommunications in 2014, and was promoted to an associate professor in 2016. He was awarded the Beijing Nova Program by Beijing Municipal Science and Technology Commission in 2020. His research interests include microcavity optics and micro-nano optical precision measurement

        Yunfeng Xiao received the B.S. and Ph.D. degrees in physics from University of Science and Technology of China in 2002 and 2007, respectively. After a postdoctoral research at Washington University in St. Louis, he joined the faculty of Peking University in 2009, and was promoted a tenured professor in 2014 a full professor in 2019. His research interests lie in the fields of whispering-gallery microcavity optics and photonics. He has authored or co-authored more than 170 refereed journal papers in Science, Nature Photonics, PNAS, PRL et al. He has delivered over 100 plenary/keynote/invited talks/seminars in international/national conferences/universities. He is an OSA Fellow, and has served as the committee for more than 30 international conferences

      • Corresponding author: Email: ydq@bupt.edu.cnyfxiao@pku.edu.cn
      • Received Date: 2020-05-27
      • Revised Date: 2020-08-06
      • Published Date: 2021-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return