SEMICONDUCTOR INTEGRATED CIRCUITS

A low-power CMOS smart temperature sensor for RFID application

Liangbo Xie, Jiaxin Liu, Yao Wang and Guangjun Wen

+ Author Affiliations

 Corresponding author: Xie Liangbo, Email:xie.liangbo@hotmail.com

PDF

Abstract: This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is -0.69/+0.85℃ after one-point calibration over a temperature range of -40 to 100℃. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230×225 μm2, and it is suitable for RFID application.

Key words: CMOSlow powertemperature sensorsub-thresholdSAR ADC



[1]
Yin J, Yi J, Law M K, et al. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE J Solid-State Circuits, 2010, 45(11):2404 http://ieeexplore.ieee.org/document/5593894/
[2]
Law M K, Bermak A, Luong H C. A sub-W embedded CMOS temperature sensor for RFID food monitoring application. IEEE J Solid-State Circuits, 2010, 45(6):1246 doi: 10.1109/JSSC.2010.2047456
[3]
Pertijs M A P, Niederkorn A, Ma X, et al. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from -50℃ to 120℃. IEEE J Solid-State Circuits, 2005, 40(2):454 doi: 10.1109/JSSC.2004.841013
[4]
Sebastiano F, Breems L J, Makinwa K A A, et al. A 1.2-V 10-W NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2℃ (3σ) from -70℃ to 125℃. IEEE J Solid-State Circuits, 2010, 45(12):2591 doi: 10.1109/JSSC.2010.2076610
[5]
Souri K, Chae Y, Makinwa K A A. A CMOS temperature sensor with a voltage-calibrated inaccuracy of 0.15℃ (3σ) from 55℃ to 125℃. IEEE J Solid-State Circuits, 2013, 48(1):292 doi: 10.1109/JSSC.2012.2214831
[6]
Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process. Journal of Semiconductors, 2011, 32(11):115013 doi: 10.1088/1674-4926/32/11/115013
[7]
Chen P, Chen C C, Tsai C C, et al. A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J Solid-State Circuits, 2005, 40(8):1642 doi: 10.1109/JSSC.2005.852041
[8]
Chen P, Chen C C, Chen T K, et al. A time domain mixed-mode temperature sensor with digital set-point programming. IEEE Custom Integrated Circuits Conference, 2006:821 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4115079
[9]
Chen P, Chen C C, Peng Y H, et al. A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of -0.4℃ +0.6℃ over a 0℃ to 90℃ range. IEEE J Solid-State Circuits, 2010, 45(3):600 doi: 10.1109/JSSC.2010.2040658
[10]
Sahafi A, Sobhi J, Koozehkanani Z D. Nano watt CMOS temperature sensor. Analog Integrated Circuits and Signal Processing, 2013, 75(3):343 doi: 10.1007/s10470-013-0046-6
[11]
Ueno K, Hirose T, Asai T. A 300 nW, 15 ppm/℃, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J Solid-State Circuits, 2009, 44(7):2047 doi: 10.1109/JSSC.2009.2021922
Fig. 1.  Block diagram of the proposed temperature sensor.

Fig. 2.  Schematic of the analog front-end.

Fig. 3.  Simulation result of $V_{\rm PTAT}$.

Fig. 4.  Temperature error of $V_{\rm PTAT}$.

Fig. 5.  Simulation result of $V_{\rm REF}$.

Fig. 6.  Temperature error of $V_{\rm PTAT}$ using $V_{\rm REF}$ compensation.

Fig. 7.  MC simulation result at 30 ℃. (a) Sensitivity of $V_{\rm PTAT}$. (b) $V_{\rm REF}$.

Fig. 8.  Simplified schematic of the charge redistribution 12-bit SAR ADC.

Fig. 9.  Schematic of the (a) comparator, (b) preamplifier, (c) latch.

Fig. 10.  (a) The microphotograph of the temperature sensor. (b) Layout of the temperature sensor.

Fig. 11.  (a) Testing platform. (b) The photograph of the testing chip.

Fig. 12.  Measurement results of temperature sensor.

Fig. 13.  Measurement results of temperature error.

Table 1.   Result comparison.

[1]
Yin J, Yi J, Law M K, et al. A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE J Solid-State Circuits, 2010, 45(11):2404 http://ieeexplore.ieee.org/document/5593894/
[2]
Law M K, Bermak A, Luong H C. A sub-W embedded CMOS temperature sensor for RFID food monitoring application. IEEE J Solid-State Circuits, 2010, 45(6):1246 doi: 10.1109/JSSC.2010.2047456
[3]
Pertijs M A P, Niederkorn A, Ma X, et al. A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5℃ from -50℃ to 120℃. IEEE J Solid-State Circuits, 2005, 40(2):454 doi: 10.1109/JSSC.2004.841013
[4]
Sebastiano F, Breems L J, Makinwa K A A, et al. A 1.2-V 10-W NPN-based temperature sensor in 65-nm CMOS with an inaccuracy of 0.2℃ (3σ) from -70℃ to 125℃. IEEE J Solid-State Circuits, 2010, 45(12):2591 doi: 10.1109/JSSC.2010.2076610
[5]
Souri K, Chae Y, Makinwa K A A. A CMOS temperature sensor with a voltage-calibrated inaccuracy of 0.15℃ (3σ) from 55℃ to 125℃. IEEE J Solid-State Circuits, 2013, 48(1):292 doi: 10.1109/JSSC.2012.2214831
[6]
Feng Peng, Zhang Qi, Wu Nanjian. A passive UHF RFID tag chip with a dual-resolution temperature sensor in a 0.18μm standard CMOS process. Journal of Semiconductors, 2011, 32(11):115013 doi: 10.1088/1674-4926/32/11/115013
[7]
Chen P, Chen C C, Tsai C C, et al. A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J Solid-State Circuits, 2005, 40(8):1642 doi: 10.1109/JSSC.2005.852041
[8]
Chen P, Chen C C, Chen T K, et al. A time domain mixed-mode temperature sensor with digital set-point programming. IEEE Custom Integrated Circuits Conference, 2006:821 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4115079
[9]
Chen P, Chen C C, Peng Y H, et al. A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of -0.4℃ +0.6℃ over a 0℃ to 90℃ range. IEEE J Solid-State Circuits, 2010, 45(3):600 doi: 10.1109/JSSC.2010.2040658
[10]
Sahafi A, Sobhi J, Koozehkanani Z D. Nano watt CMOS temperature sensor. Analog Integrated Circuits and Signal Processing, 2013, 75(3):343 doi: 10.1007/s10470-013-0046-6
[11]
Ueno K, Hirose T, Asai T. A 300 nW, 15 ppm/℃, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J Solid-State Circuits, 2009, 44(7):2047 doi: 10.1109/JSSC.2009.2021922
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2956 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 23 March 2014 Revised: 23 June 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liangbo Xie, Jiaxin Liu, Yao Wang, Guangjun Wen. A low-power CMOS smart temperature sensor for RFID application[J]. Journal of Semiconductors, 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002 L B Xie, J X Liu, Y Wang, G J Wen. A low-power CMOS smart temperature sensor for RFID application[J]. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002.Export: BibTex EndNote
      Citation:
      Liangbo Xie, Jiaxin Liu, Yao Wang, Guangjun Wen. A low-power CMOS smart temperature sensor for RFID application[J]. Journal of Semiconductors, 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002

      L B Xie, J X Liu, Y Wang, G J Wen. A low-power CMOS smart temperature sensor for RFID application[J]. J. Semicond., 2014, 35(11): 115002. doi: 10.1088/1674-4926/35/11/115002.
      Export: BibTex EndNote

      A low-power CMOS smart temperature sensor for RFID application

      doi: 10.1088/1674-4926/35/11/115002
      Funds:

      Project supported by the Wuxi Special Funds for Development of Internet of Things of China (No. 0414B011601130083PB)

      the Wuxi Special Funds for Development of Internet of Things of China 0414B011601130083PB

      More Information
      • Corresponding author: Xie Liangbo, Email:xie.liangbo@hotmail.com
      • Received Date: 2014-03-23
      • Revised Date: 2014-06-23
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return