SEMICONDUCTOR TECHNOLOGY

Slurry components of TiO2 thin film in chemical mechanical polishing

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang and Yufeng Zhang

+ Author Affiliations

 Corresponding author: Duan Bo, Email:1029684838@qq.com

PDF

Abstract: A chemical mechanical polishing (CMP) process was selected to smooth TiO2 thin film surface and improve the removal rate. Meanwhile, the optimal process conditions were used in TiO2 thin film CMP. The effects of silica sols concentration, slurry pH, chelating agent and active agent concentration on surface roughness and material removal rate were investigated. Our experimental results indicated that we got lower surface roughness (1.26 Å, the scanned area was 10×10 μm2) and higher polishing rate (65.6 nm/min), the optimal parameters were:silica sols concentration 8.0%, pH value 9.0, active agent concentration 50 mL/L, chelating agent concentration 10 mL/L, respectively.

Key words: TiO2 thin filmslurry componentssurface roughnessremoval rate



[1]
Callback K, Sikora M, Kapusta C, et al. X-ray absorption and emission spectroscopy of TiO2 thin films with modified anionic sublattice. Radiation Physics and Chemistry, 2013, 93:40 doi: 10.1016/j.radphyschem.2013.03.035
[2]
Shen H, Cheng B, Lu G, et al. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology, 2006, 17:4274 doi: 10.1088/0957-4484/17/16/045
[3]
Wang Wuyu, Wang Xijing, Yang Taili. Review on optoelectronic properties and applications of TiO2 films. Chinese Journal of Rare Metals, 2008, 32(6):781
[4]
Hocine D, Belkaid M S, Pasquinelli M, et al. Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater Sci Semicond Processing, 2013, 16(1):113 doi: 10.1016/j.mssp.2012.06.004
[5]
Peng Xiao, Feng Yaqing, Meng Shuxian, et al. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115:255 doi: 10.1016/j.electacta.2013.10.126
[6]
Weng K W, Huang Y P. Preparation of TiO2 thin films on glass surfaces with self-cleaning characteristics for solar concentrators. Surface and Coatings Technology, 2013, 231:201 doi: 10.1016/j.surfcoat.2012.06.058
[7]
Wang T Q, Lu X C, Zhao D W, et al. Optimization of design of experiment for chemical mechanical polishing of a 12-inch wafer. Microelectron Eng, 2013, 112:5 doi: 10.1016/j.mee.2013.05.010
[8]
Choi S, Doyle F M, Dornfeld D, et al. a model of material removal and post process surface topography for copper CMP. Procedia Engineering, 2011, 19:73 doi: 10.1016/j.proeng.2011.11.082
[9]
Choi G W, Lee K Y, Kim N H, et al. CMP characteristics and optical property of ITO thin film by using silica slurry with a variety of process parameters. Microelectron Eng, 2006, 83:2213 doi: 10.1016/j.mee.2006.10.006
[10]
Liu Y L, Zhang K L, Wang F, et al. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectron Eng, 2003, 66:438 doi: 10.1016/S0167-9317(02)00908-5
[11]
Seo J, Yoon K S, Moon J, et al. Effects of physico-chemical properties between poly (ethyleneimine) and silica abrasive on copper chemical mechanical planarization. Microelectron Eng, 2014, 113:50 doi: 10.1016/j.mee.2013.07.006
[12]
Liu X Y, Liu Y L, Liang Y, et al. Optimization of slurry components for a copper chemical mechanical polishing at low down pressure using response surface methodology. Microelectron Eng, 2011, 88:99 doi: 10.1016/j.mee.2010.09.007
[13]
Wang C W, Liu Y L, Tian J Y, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[14]
Kwon T Y, Ramachandran M, Cho B J, et al. The impact of diamond conditioners on scratch formation during chemical mechanical planarization (CMP) of silicon dioxide. Tribology International, 2013, 67:272 doi: 10.1016/j.triboint.2013.08.008
[15]
Wei Wenhao, Liu Yuling, Wang Chenwei, et al. Study of a novel alkaline barrier slurry applied in copper chemical mechanical planarization. Journal of Functional Materials, 2012, 43(23):3333
[16]
Tan Baimei, Li Weiwei, Niu Xinhuan, et al. Effect of surfactant on removal of particle contamination on Si wafers in ULSI. Transaction of Nonferrous Metals Society of China, 2006, 16:195 doi: 10.1016/S1003-6326(06)60174-X
Fig. 1.  Schematic of TiO2 thin film structure

Fig. 2.  Effect of SiO2 concentration on the MRR and Ra

Fig. 3.  Comparison surface morphologies images of TiO2 thin film CMP by different SiO2 concentrations (7%, 8%, 9%)

Fig. 4.  Effect of pH on the MRR and Ra

Fig. 5.  Comparison surface morphologies images of TiO2 thin film CMP by different slurry pH values

Fig. 6.  Effect of chelating agent concentration on the MRR and Ra

Fig. 7.  Effect of active agent concentration on the MRR and Ra

Fig. 8.  The active agent accelerated mass transmission of the resultants

Fig. 9.  Surface roughness and removal rates after polishing at an optimum slurry parameters

Fig. 10.  Comparison of surface morphologies images of TiO2 thin film (a) before and (b) after CMP by optimum slurry composition parameters

Table 1.   Optimum slurry composition for TiO2 thin film CMP

[1]
Callback K, Sikora M, Kapusta C, et al. X-ray absorption and emission spectroscopy of TiO2 thin films with modified anionic sublattice. Radiation Physics and Chemistry, 2013, 93:40 doi: 10.1016/j.radphyschem.2013.03.035
[2]
Shen H, Cheng B, Lu G, et al. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology, 2006, 17:4274 doi: 10.1088/0957-4484/17/16/045
[3]
Wang Wuyu, Wang Xijing, Yang Taili. Review on optoelectronic properties and applications of TiO2 films. Chinese Journal of Rare Metals, 2008, 32(6):781
[4]
Hocine D, Belkaid M S, Pasquinelli M, et al. Improved efficiency of multicrystalline silicon solar cells by TiO2 antireflection coatings derived by APCVD process. Mater Sci Semicond Processing, 2013, 16(1):113 doi: 10.1016/j.mssp.2012.06.004
[5]
Peng Xiao, Feng Yaqing, Meng Shuxian, et al. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115:255 doi: 10.1016/j.electacta.2013.10.126
[6]
Weng K W, Huang Y P. Preparation of TiO2 thin films on glass surfaces with self-cleaning characteristics for solar concentrators. Surface and Coatings Technology, 2013, 231:201 doi: 10.1016/j.surfcoat.2012.06.058
[7]
Wang T Q, Lu X C, Zhao D W, et al. Optimization of design of experiment for chemical mechanical polishing of a 12-inch wafer. Microelectron Eng, 2013, 112:5 doi: 10.1016/j.mee.2013.05.010
[8]
Choi S, Doyle F M, Dornfeld D, et al. a model of material removal and post process surface topography for copper CMP. Procedia Engineering, 2011, 19:73 doi: 10.1016/j.proeng.2011.11.082
[9]
Choi G W, Lee K Y, Kim N H, et al. CMP characteristics and optical property of ITO thin film by using silica slurry with a variety of process parameters. Microelectron Eng, 2006, 83:2213 doi: 10.1016/j.mee.2006.10.006
[10]
Liu Y L, Zhang K L, Wang F, et al. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectron Eng, 2003, 66:438 doi: 10.1016/S0167-9317(02)00908-5
[11]
Seo J, Yoon K S, Moon J, et al. Effects of physico-chemical properties between poly (ethyleneimine) and silica abrasive on copper chemical mechanical planarization. Microelectron Eng, 2014, 113:50 doi: 10.1016/j.mee.2013.07.006
[12]
Liu X Y, Liu Y L, Liang Y, et al. Optimization of slurry components for a copper chemical mechanical polishing at low down pressure using response surface methodology. Microelectron Eng, 2011, 88:99 doi: 10.1016/j.mee.2010.09.007
[13]
Wang C W, Liu Y L, Tian J Y, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[14]
Kwon T Y, Ramachandran M, Cho B J, et al. The impact of diamond conditioners on scratch formation during chemical mechanical planarization (CMP) of silicon dioxide. Tribology International, 2013, 67:272 doi: 10.1016/j.triboint.2013.08.008
[15]
Wei Wenhao, Liu Yuling, Wang Chenwei, et al. Study of a novel alkaline barrier slurry applied in copper chemical mechanical planarization. Journal of Functional Materials, 2012, 43(23):3333
[16]
Tan Baimei, Li Weiwei, Niu Xinhuan, et al. Effect of surfactant on removal of particle contamination on Si wafers in ULSI. Transaction of Nonferrous Metals Society of China, 2006, 16:195 doi: 10.1016/S1003-6326(06)60174-X
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2094 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 03 March 2014 Revised: 23 April 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing[J]. Journal of Semiconductors, 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003 B Duan, J W Zhou, Y L Liu, C W Wang, Y F Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing[J]. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003.Export: BibTex EndNote
      Citation:
      Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing[J]. Journal of Semiconductors, 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003

      B Duan, J W Zhou, Y L Liu, C W Wang, Y F Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing[J]. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003.
      Export: BibTex EndNote

      Slurry components of TiO2 thin film in chemical mechanical polishing

      doi: 10.1088/1674-4926/35/10/106003
      Funds:

      the Natural Science Foundation of Hebei Province E2013202247

      Project supported by the Natural Science Foundation of Hebei Province (No. E2013202247), the Science and Technology Plan Project of Hebei Province (Nos. Z2010112, 10213936), and the Hebei Province Department of Education Fund (No. 2011128)

      the Hebei Province Department of Education Fund 2011128

      the Science and Technology Plan Project of Hebei Province Z2010112

      the Science and Technology Plan Project of Hebei Province 10213936

      More Information
      • Corresponding author: Duan Bo, Email:1029684838@qq.com
      • Received Date: 2014-03-03
      • Revised Date: 2014-04-23
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return