ARTICLES

Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT

R. Singh1, T. R. Lenka1, , R. T. Velpula2, B. Jain2, H. Q. T. Bui2 and H. P. T. Nguyen2

+ Author Affiliations

 Corresponding author: T. R. Lenka, Email: trlenka@ieee.org

PDF

Turn off MathJax

Abstract: In this paper, drain current transient characteristics of β-Ga2O3 high electron mobility transistor (HEMT) are studied to access current collapse and recovery time due to dynamic population and de-population of deep level traps and interface traps. An approximately 10 min, and 1 h of recovery time to steady-state drain current value is measured under 1 ms of stress on the gate and drain electrodes due to iron (Fe)–doped β-Ga2O3 substrate and germanium (Ge)–doped β-Ga2O3 epitaxial layer respectively. On-state current lag is more severe due to widely reported defect trap EC – 0.82 eV over EC – 0.78 eV, −0.75 eV present in Iron (Fe)-doped β-Ga2O3 bulk crystals. A negligible amount of current degradation is observed in the latter case due to the trap level at EC – 0.98 eV. It is found that occupancy of ionized trap density varied mostly under the gate and gate–source area. This investigation of reversible current collapse phenomenon and assessment of recovery time in β-Ga2O3 HEMT is carried out through 2D device simulations using appropriate velocity and charge transport models. This work can further help in the proper characterization of β-Ga2O3 devices to understand temporary and permanent device degradation.

Key words: β-Ga2O3current collapsedegradationHEMTrecovery timetrapstrapping effects



[1]
He H Y, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74, 195123 doi: 10.1103/PhysRevB.74.195123
[2]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287
[3]
Ghosh K, Singisetti U. Ab initio velocity-field curves in monoclinic β-Ga2O3. J Appl Phys, 2017, 122, 035702 doi: 10.1063/1.4986174
[4]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[5]
Chikoidze E, Fellous A, Perez-Tomas A, et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3, 118 doi: 10.1016/j.mtphys.2017.10.002
[6]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[7]
Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220, 510 doi: 10.1016/S0022-0248(00)00851-4
[8]
Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47, 8506 doi: 10.1143/JJAP.47.8506
[9]
Farzana E, Ahmadi E, Speck J S, et al. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy. J Appl Phys, 2018, 123, 161410 doi: 10.1063/1.5010608
[10]
Zhang Z, Farzana E, Arehart A R, et al. Erratum: “Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy” [Appl. Phys. Lett. 108, 052105 (2016)]. Appl Phys Lett, 2016, 108, 079901 doi: 10.1063/1.4942431
[11]
Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 2011, 110, 063720 doi: 10.1063/1.3642962
[12]
Ingebrigtsen M E, Varley J B, Kuznetsov A Y, et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 2018, 112, 042104 doi: 10.1063/1.5020134
[13]
Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34, 493 doi: 10.1109/LED.2013.2244057
[14]
Krishnamoorthy S, Xia Z B, Bajaj S, et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express, 2017, 10, 051102 doi: 10.7567/APEX.10.051102
[15]
Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111, 092102 doi: 10.1063/1.5000735
[16]
Oshima T, Kato Y, Kawano N, et al. Carrier confinement observed at modulation-doped β-(Al xGa1– x)2O3/Ga2O3 heterojunction interface. Appl Phys Express, 2017, 10, 035701 doi: 10.7567/APEX.10.035701
[17]
Zhang Y W, Neal A, Xia Z B, et al. Demonstration of high mobility and quantum transport in modulation-doped β-(Al xGa1 – x)2O3/Ga2O3 heterostructures. Appl Phys Lett, 2018, 112, 173502 doi: 10.1063/1.5025704
[18]
McGlone J F, Xia Z B, Zhang Y W, et al. Trapping effects in Si δ-doped β-Ga2O3 MESFETs on an Fe-doped β-Ga2O3 substrate. IEEE Electron Device Lett, 2018, 39, 1042 doi: 10.1109/LED.2018.2843344
[19]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defect states determining dynamic trapping-detrapping in β-Ga2O3 field-effect transistors. ECS J Solid State Sci Technol, 2019, 8, Q3013 doi: 10.1149/2.0031907jss
[20]
Sun H D, Torres Castanedo C G, Liu K K, et al. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl Phys Lett, 2017, 111, 162105 doi: 10.1063/1.5003930
[21]
Mock A, Korlacki R, Briley C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Phys Rev B, 2017, 96, 245205 doi: 10.1103/PhysRevB.96.245205
[22]
Device simulation software, ATLAS user’s manual. Silvaco, Santa Clara, CA, USA, 2009
[23]
Lu Y, Yao H H, Li J, et al. AlN/β-Ga2O3 based HEMT: A potential pathway to ultimate high power device. arXiv: 1901.05111, 2019
[24]
Balaz D. Current collapse and device degradation in AlGaN/GaN heterostructure field effect transistors. Ph D Dissertation, University of Glasgow, 2011
Fig. 1.  (Color online) Schematic cross sectional view of the analysed device structure.

Fig. 2.  (Color online) Pre-stress and post-stress bias voltages at gate and drain terminals.

Fig. 3.  (Color online) Pre-stress and post-stress drain current. Inset: current collapse.

Fig. 4.  (Color online) Trapping and de-trapping of defect trap under gate stress.

Fig. 5.  (Color online) Drain stress and recovery of current recovery due to de-population of traps.

Fig. 6.  (Color online) Current collapse and recovery curve, showing intentional doped Fe causes most of the current collapse and Ge doping caused current collapse takes approximately 2 h to attain steady state value.

Fig. 7.  (Color online) Ionised trap density horizontally at a depth of 0.5 μm in the substrate.

Table 1.   Deep level traps reported in β-Ga2O3 substrate and epitaxial layer, energy level, capture cross section and trap concentration. Fe and Ge enabled current collapse and drain current recovery time to pre-stress condition.

ReferenceTrap energy
levels (eV)
Capture cross section
(10−14 cm–2)
Trap sourceTrap concentration
(1015 cm–3)
Current collapse/
recovery time
[12]EC – 0.780.7Fe-doped substrate (${\overline 2}$01)10Moderate/ few seconds
EC – 0.755Fe-doped substrate (${\overline 2}$01)10Moderate/ few minutes
[9]EC – 0.980.1− 9Ge-doped PAMBE on (010) substrate1.6Mild/ ~ 1 h
[10]EC – 0.821UID bulk EFG wafer (010)36Severe/ ~ 10 min
DownLoad: CSV
[1]
He H Y, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74, 195123 doi: 10.1103/PhysRevB.74.195123
[2]
Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 2012, 100, 013504 doi: 10.1063/1.3674287
[3]
Ghosh K, Singisetti U. Ab initio velocity-field curves in monoclinic β-Ga2O3. J Appl Phys, 2017, 122, 035702 doi: 10.1063/1.4986174
[4]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[5]
Chikoidze E, Fellous A, Perez-Tomas A, et al. P-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3, 118 doi: 10.1016/j.mtphys.2017.10.002
[6]
Kyrtsos A, Matsubara M, Bellotti E. On the feasibility of p-type Ga2O3. Appl Phys Lett, 2018, 112, 032108 doi: 10.1063/1.5009423
[7]
Tomm Y, Reiche P, Klimm D, et al. Czochralski grown Ga2O3 crystals. J Cryst Growth, 2000, 220, 510 doi: 10.1016/S0022-0248(00)00851-4
[8]
Aida H, Nishiguchi K, Takeda H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn J Appl Phys, 2008, 47, 8506 doi: 10.1143/JJAP.47.8506
[9]
Farzana E, Ahmadi E, Speck J S, et al. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy. J Appl Phys, 2018, 123, 161410 doi: 10.1063/1.5010608
[10]
Zhang Z, Farzana E, Arehart A R, et al. Erratum: “Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy” [Appl. Phys. Lett. 108, 052105 (2016)]. Appl Phys Lett, 2016, 108, 079901 doi: 10.1063/1.4942431
[11]
Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J Appl Phys, 2011, 110, 063720 doi: 10.1063/1.3642962
[12]
Ingebrigtsen M E, Varley J B, Kuznetsov A Y, et al. Iron and intrinsic deep level states in Ga2O3. Appl Phys Lett, 2018, 112, 042104 doi: 10.1063/1.5020134
[13]
Sasaki K, Higashiwaki M, Kuramata A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates. IEEE Electron Device Lett, 2013, 34, 493 doi: 10.1109/LED.2013.2244057
[14]
Krishnamoorthy S, Xia Z B, Bajaj S, et al. Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express, 2017, 10, 051102 doi: 10.7567/APEX.10.051102
[15]
Zhou H, Maize K, Qiu G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl Phys Lett, 2017, 111, 092102 doi: 10.1063/1.5000735
[16]
Oshima T, Kato Y, Kawano N, et al. Carrier confinement observed at modulation-doped β-(Al xGa1– x)2O3/Ga2O3 heterojunction interface. Appl Phys Express, 2017, 10, 035701 doi: 10.7567/APEX.10.035701
[17]
Zhang Y W, Neal A, Xia Z B, et al. Demonstration of high mobility and quantum transport in modulation-doped β-(Al xGa1 – x)2O3/Ga2O3 heterostructures. Appl Phys Lett, 2018, 112, 173502 doi: 10.1063/1.5025704
[18]
McGlone J F, Xia Z B, Zhang Y W, et al. Trapping effects in Si δ-doped β-Ga2O3 MESFETs on an Fe-doped β-Ga2O3 substrate. IEEE Electron Device Lett, 2018, 39, 1042 doi: 10.1109/LED.2018.2843344
[19]
Polyakov A Y, Smirnov N B, Shchemerov I V, et al. Defect states determining dynamic trapping-detrapping in β-Ga2O3 field-effect transistors. ECS J Solid State Sci Technol, 2019, 8, Q3013 doi: 10.1149/2.0031907jss
[20]
Sun H D, Torres Castanedo C G, Liu K K, et al. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl Phys Lett, 2017, 111, 162105 doi: 10.1063/1.5003930
[21]
Mock A, Korlacki R, Briley C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Phys Rev B, 2017, 96, 245205 doi: 10.1103/PhysRevB.96.245205
[22]
Device simulation software, ATLAS user’s manual. Silvaco, Santa Clara, CA, USA, 2009
[23]
Lu Y, Yao H H, Li J, et al. AlN/β-Ga2O3 based HEMT: A potential pathway to ultimate high power device. arXiv: 1901.05111, 2019
[24]
Balaz D. Current collapse and device degradation in AlGaN/GaN heterostructure field effect transistors. Ph D Dissertation, University of Glasgow, 2011
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3878 Times PDF downloads: 89 Times Cited by: 0 Times

    History

    Received: 12 February 2020 Revised: 27 May 2020 Online: Accepted Manuscript: 28 June 2020Uncorrected proof: 01 July 2020Published: 01 October 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      R. Singh, T. R. Lenka, R. T. Velpula, B. Jain, H. Q. T. Bui, H. P. T. Nguyen. Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT[J]. Journal of Semiconductors, 2020, 41(10): 102802. doi: 10.1088/1674-4926/41/10/102802 R Singh, T R Lenka, R T Velpula, B Jain, H Q T Bui, H P T Nguyen, Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT[J]. J. Semicond., 2020, 41(10): 102802. doi: 10.1088/1674-4926/41/10/102802.Export: BibTex EndNote
      Citation:
      R. Singh, T. R. Lenka, R. T. Velpula, B. Jain, H. Q. T. Bui, H. P. T. Nguyen. Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT[J]. Journal of Semiconductors, 2020, 41(10): 102802. doi: 10.1088/1674-4926/41/10/102802

      R Singh, T R Lenka, R T Velpula, B Jain, H Q T Bui, H P T Nguyen, Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT[J]. J. Semicond., 2020, 41(10): 102802. doi: 10.1088/1674-4926/41/10/102802.
      Export: BibTex EndNote

      Investigation of current collapse and recovery time due to deep level defect traps in β-Ga2O3 HEMT

      doi: 10.1088/1674-4926/41/10/102802
      More Information
      • Corresponding author: Email: trlenka@ieee.org
      • Received Date: 2020-02-12
      • Revised Date: 2020-05-27
      • Published Date: 2020-10-04

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return