SEMICONDUCTOR INTEGRATED CIRCUITS

A fixed-frequency fast transient response DC-DC controller for VRMs

Mingyang Chen, Menglian Zhao and Xiaobo Wu

+ Author Affiliations

 Corresponding author: Zhao Menglian, zhaoml@vlsi.zju.edu.cn

PDF

Abstract: A 2V-10A fast transient response DC-DC buck controller based on fixed frequency hysteresis control is presented. A carefully designed output voltage filter detects the output capacitor current change which helps the controller to respond immediately after load changes. Adaptive hysteresis control guarantees the switching frequency to be the same as the reference frequency by using a CCⅡ-composed circuit and current mirrors. The controller is designed and fabricated in a TSMC 0.35 μm process. Simulation and test results show that this controller achieves a 20 μs settling time in one single switching cycle when load current changes from 1 A to the full load condition at 10 A.

Key words: fast responsehysteretic controlbuck



[1]
Lu D D C, Liu J C P, Poon F N K, et al. A single phase voltage regulator module (VRM) with stepping inductance for fast transient response. EEE Trans Power Electron, 2007, 22(2):417 doi: 10.1109/TPEL.2006.889909
[2]
Rais M. Synchronous buck regulator design using the TI TPS5211 high-frequency hysteretic controller. Analog Applications Journal, 1999:10
[3]
Yuri P, Jovanovic M M. Design considerations for 12-V/1.5-V, 50-A voltage regulator modules. IEEE Trans Power Electron, 2001, 16(6):776 doi: 10.1109/63.974375
[4]
Rais M. Optimal design of interleaved synchronous buck converter at high slew-rate load current transients. IEEE Power Electronics Specialists Conference, 2001, 3:1714 http://ieeexplore.ieee.org/document/954366/
[5]
Barrado A, Quintero J, Lazaro A, et al. Linear-non-linear control applied in multiphase VRM. IEEE Power Electronics Specialists Conference, 2005:904
[6]
Song Q. Modeling and design considerations of V2 controlled buck regulator. IEEE Applied Power Electronics Conference and Exposition, 2001:507
[7]
Li J, Lee F C. Modeling of V2 current-mode control. IEEE Applied Power Electronics Conference and Exposition, 2009:298
[8]
Feng S, Ki W H, Tsui C Y. Ultra-fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications. IEEE J Solid-State Circuits, 2008, 43(4):815 doi: 10.1109/JSSC.2008.917533
[9]
Xu Xiaoru, Wu Xiaobo, Zhao Menglian, et al. Design and implementation of a high dimming ratio LED drive controller. Journal of Semiconductors, 2009, 30(2):025010 doi: 10.1088/1674-4926/30/2/025010
[10]
Huerta S C, Alou P, Garcia O, et al. Hysteretic mixed-signal controller for high-frequency DC-DC converters operating at constant switching frequency. IEEE Trans Power Electron, 2012, 27(6):2690 doi: 10.1109/TPEL.2012.2184770
[11]
Li P, Bhatia D, Xue L, et al. A 90-240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization. IEEE J Solid-State Circuits, 2011, 46(9):2108 doi: 10.1109/JSSC.2011.2139550
[12]
Vidal-Idiarte E, Carrejo C E, Calvente J. et al. Two-loop digital sliding mode control of DC-DC power converters based on predictive interpolation. IEEE Trans Industrial Electron, 2011, 58(6):2491
[13]
Corradini L, BjeleticA, Zane R, et al. Fully digital hysteretic modulator for DC-DC switching converters. IEEE Trans Power Electron, 2011, 26(10):2969 doi: 10.1109/TPEL.2010.2055244
[14]
Huang H H, Chen C L, Chen K H. Adaptive window control (AWC) technique for hysteresis DC-DC buck converters with improved light and heavy load performance. IEEE Trans Power Electron, 2009, 24(6):1607 doi: 10.1109/TPEL.2009.2014687
[15]
Chuang C J, Chou H P. An efficient fast response hysteresis buck converter with adaptive synthetic ripple modulator. IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011:620
[16]
Tan S C, Lai Y M, Tse C K. General design issues of sliding-mode controllers in DC-DC converters. IEEE Trans Industrial Electron, 2008, 55(3):1160 doi: 10.1109/TIE.2007.909058
[17]
Jacob B R. CMOS:circuit design, layout, and simulation. Wiley-IEEE Press, 2011:18
[18]
Sedra A S, Smith K C. A second-generation current conveyor and its applications. IEEE Trans Circuit Theory, 1970, 17(1):132 doi: 10.1109/TCT.1970.1083067
Fig. 1.  Basic structure of a conventional hysteretic controller.

Fig. 2.  Waveforms of a conventional hysteretic converter.

Fig. 3.  System architecture.

Fig. 4.  (a)$F$-$V$ converter structure. (b) $F$-$V$ converter sequence waveform.

Fig. 5.  The frequency regulator.

Fig. 6.  Hysteretic window controller.

Fig. 7.  Simulation result for load step.

Fig. 8.  Simulation result for fixed frequency control.

Fig. 9.  Die photo and test board of this hysteretic controller.

Table 1.   Design parameters of the buck converter.

Table 2.   Comparison of buck converters.

[1]
Lu D D C, Liu J C P, Poon F N K, et al. A single phase voltage regulator module (VRM) with stepping inductance for fast transient response. EEE Trans Power Electron, 2007, 22(2):417 doi: 10.1109/TPEL.2006.889909
[2]
Rais M. Synchronous buck regulator design using the TI TPS5211 high-frequency hysteretic controller. Analog Applications Journal, 1999:10
[3]
Yuri P, Jovanovic M M. Design considerations for 12-V/1.5-V, 50-A voltage regulator modules. IEEE Trans Power Electron, 2001, 16(6):776 doi: 10.1109/63.974375
[4]
Rais M. Optimal design of interleaved synchronous buck converter at high slew-rate load current transients. IEEE Power Electronics Specialists Conference, 2001, 3:1714 http://ieeexplore.ieee.org/document/954366/
[5]
Barrado A, Quintero J, Lazaro A, et al. Linear-non-linear control applied in multiphase VRM. IEEE Power Electronics Specialists Conference, 2005:904
[6]
Song Q. Modeling and design considerations of V2 controlled buck regulator. IEEE Applied Power Electronics Conference and Exposition, 2001:507
[7]
Li J, Lee F C. Modeling of V2 current-mode control. IEEE Applied Power Electronics Conference and Exposition, 2009:298
[8]
Feng S, Ki W H, Tsui C Y. Ultra-fast fixed-frequency hysteretic buck converter with maximum charging current control and adaptive delay compensation for DVS applications. IEEE J Solid-State Circuits, 2008, 43(4):815 doi: 10.1109/JSSC.2008.917533
[9]
Xu Xiaoru, Wu Xiaobo, Zhao Menglian, et al. Design and implementation of a high dimming ratio LED drive controller. Journal of Semiconductors, 2009, 30(2):025010 doi: 10.1088/1674-4926/30/2/025010
[10]
Huerta S C, Alou P, Garcia O, et al. Hysteretic mixed-signal controller for high-frequency DC-DC converters operating at constant switching frequency. IEEE Trans Power Electron, 2012, 27(6):2690 doi: 10.1109/TPEL.2012.2184770
[11]
Li P, Bhatia D, Xue L, et al. A 90-240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization. IEEE J Solid-State Circuits, 2011, 46(9):2108 doi: 10.1109/JSSC.2011.2139550
[12]
Vidal-Idiarte E, Carrejo C E, Calvente J. et al. Two-loop digital sliding mode control of DC-DC power converters based on predictive interpolation. IEEE Trans Industrial Electron, 2011, 58(6):2491
[13]
Corradini L, BjeleticA, Zane R, et al. Fully digital hysteretic modulator for DC-DC switching converters. IEEE Trans Power Electron, 2011, 26(10):2969 doi: 10.1109/TPEL.2010.2055244
[14]
Huang H H, Chen C L, Chen K H. Adaptive window control (AWC) technique for hysteresis DC-DC buck converters with improved light and heavy load performance. IEEE Trans Power Electron, 2009, 24(6):1607 doi: 10.1109/TPEL.2009.2014687
[15]
Chuang C J, Chou H P. An efficient fast response hysteresis buck converter with adaptive synthetic ripple modulator. IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), 2011:620
[16]
Tan S C, Lai Y M, Tse C K. General design issues of sliding-mode controllers in DC-DC converters. IEEE Trans Industrial Electron, 2008, 55(3):1160 doi: 10.1109/TIE.2007.909058
[17]
Jacob B R. CMOS:circuit design, layout, and simulation. Wiley-IEEE Press, 2011:18
[18]
Sedra A S, Smith K C. A second-generation current conveyor and its applications. IEEE Trans Circuit Theory, 1970, 17(1):132 doi: 10.1109/TCT.1970.1083067
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2202 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 09 May 2013 Revised: 09 July 2013 Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Mingyang Chen, Menglian Zhao, Xiaobo Wu. A fixed-frequency fast transient response DC-DC controller for VRMs[J]. Journal of Semiconductors, 2013, 34(12): 125002. doi: 10.1088/1674-4926/34/12/125002 M Y Chen, M L Zhao, X B Wu. A fixed-frequency fast transient response DC-DC controller for VRMs[J]. J. Semicond., 2013, 34(12): 125002. doi: 10.1088/1674-4926/34/12/125002.Export: BibTex EndNote
      Citation:
      Mingyang Chen, Menglian Zhao, Xiaobo Wu. A fixed-frequency fast transient response DC-DC controller for VRMs[J]. Journal of Semiconductors, 2013, 34(12): 125002. doi: 10.1088/1674-4926/34/12/125002

      M Y Chen, M L Zhao, X B Wu. A fixed-frequency fast transient response DC-DC controller for VRMs[J]. J. Semicond., 2013, 34(12): 125002. doi: 10.1088/1674-4926/34/12/125002.
      Export: BibTex EndNote

      A fixed-frequency fast transient response DC-DC controller for VRMs

      doi: 10.1088/1674-4926/34/12/125002
      Funds:

      Analog Devices, Inc. (ADI) 

      Project supported by the Zhejiang Provincial Natural Science Foundation, China (No. LY13F040001) and Analog Devices, Inc. (ADI)

      the Zhejiang Provincial Natural Science Foundation, China LY13F040001

      More Information
      • Corresponding author: Zhao Menglian, zhaoml@vlsi.zju.edu.cn
      • Received Date: 2013-05-09
      • Revised Date: 2013-07-09
      • Published Date: 2013-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return