ARTICLES

Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics

P. Vigneshwara Raja1 and N. V. L. Narasimha Murty2,

+ Author Affiliations

 Corresponding author: N. V. L. Narasimha Murty, Email: nnmurty@iittp.ac.in

PDF

Turn off MathJax

Abstract: Thermal annealing effects on gamma irradiated Ni/4H-SiC Schottky barrier diode (SBD) characteristics are analyzed over a wide range of temperatures (400–1100 °C). The annealing induced variations in the concentration of deep level traps in the SBDs are identified by thermally stimulated capacitance (TSCAP). A little decrease in the trap density at EC – 0.63 eV and EC – 1.13 eV is observed up to the annealing temperature of 600 °C. Whereas, a gamma induced trap at EC – 0.89 eV disappeared after annealing at 500 °C, revealing that its concentration (< 1013 cm−3) is reduced below the detection limit of the TSCAP technique. The electrical characteristics of irradiated SBDs are considerably changed at each annealing temperature. To understand the anomalous variations in the post-annealing characteristics, the interface state density distribution in the annealed SBDs is extracted. The electrical properties are improved at 400 °C due to the reduction in the interface trap density. However, from 500 °C, the electrical parameters are found to degrade with the annealing temperature because of the increase in the interface trap density. From the results, it is noted that the rectifying nature of the SBDs vanishes at or above 800 °C.

Key words: 4H-silicon carbideSchottky barrier diodethermal annealingelectrically active defectsthermally stimulated capacitance



[1]
Xin X, Yan F, Koeth T W, et al. Demonstration of the first 4H-SiC EUV detector with large detection area. NASA Technical Report Server, 2005.[online]. Available: https://ntrs.nasa.gov/search.jsp?R=20090022809
[2]
Xin X, Yan F, Koeth T W, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4): 212. doi: 10.1049/el:20057320
[3]
Lees J E, Bassford D J, Bunce E J, et al. Silicon carbide X-ray detectors for planetary exploration. Nucl Instr Meth Phys Res A, 2009, 604(1/2): 174. doi: 10.1016/j.nima.2009.01.050
[4]
Huber M C E, Pauluhn A, Culhane J L, et al. Observing photons in space: a guide to experimental space astronomy. New York: Springer, 2013
[5]
Raja P V, Murty N V L N. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC schottky barrier diodes. J Appl Phys, 2018, 123(16): 161536. doi: 10.1063/1.5003068
[6]
Castaldini A, Cavallini A, Rigutti L, et al. Low temperature annealing of electron irradiation induced defects in 4H-SiC. Appl Phys Lett, 2004, 85(17): 3780. doi: 10.1063/1.1810627
[7]
Iwamoto N, Johnson B C, Ohshima T, et al. Annealing effects on charge collection efficiency of an electron-irradiated 4H-SiC particle detector. 10th international workshop on radiation effects on semiconductor devices for space applications (RASEDA-10), 2013: 42
[8]
Zetterling C M, Lee S K, Ostling M. Schottky and ohmic contacts to SiC, in Process technology for silicon carbide devices. London: INSPEC IET, 2002: 111
[9]
Roccaforte F, La Via F, Baeri A, et al. Structural and electrical properties of Ni/Ti schottky contacts on silicon carbide upon thermal annealing. J Appl Phys, 2004, 96(8): 4313. doi: 10.1063/1.1787138
[10]
Strel’chuk A M, Davydov A V, Tringe J, et al. Characteristics of He+-irradiated Ni schottky diodes based on 4H-SiC epilayer grown by sublimation. Phys Status Solidi C, 2009, 6(12): 2876. doi: 10.1002/pssc.v6:12
[11]
Gupta S K, Azam A, Akhtar J. Improved electrical parameters of vacuum annealed Ni/4H-SiC (0001) schottky barrier diode. Physica B, 2011, 406(15/16), 3030.
[12]
Gupta S K, Pradhan N, Shekhar C, et al. Design, fabrication, and characterization of Ni/4H-SiC (0001) schottky diodes array equipped with field plate and floating guard ring edge termination structures. IEEE Trans Semicond Manuf, 2012, 25(4): 664. doi: 10.1109/TSM.2012.2214245
[13]
Kumar V, Kaminski N, Maan A S, et al. Capacitance roll-off and frequency-dispersion capacitance-conductance phenomena in field plate and guard ring edge-terminated Ni/SiO2/4H-nSiC schottky barrier diodes. Phys Status Solidi A, 2016, 213(1): 193. doi: 10.1002/pssa.v213.1
[14]
Kumar V, Maan A S, Akhtar J. Tailoring surface and electrical properties of Ni/4H-nSiC schottky barrier diodes via selective swift heavy ion irradiation. Phys Status Solidi A, 2018, 215(5): 1700555. doi: 10.1002/pssa.v215.5
[15]
Huang L, Liu B, Zhu Q, et al. Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. J Appl Phys, 2012, 100(26): 263503. doi: 10.1063/1.4730435
[16]
Kcstle A, Wilks S P, Dunstan P R, et al. Improved Ni/SiC schottky diode formation. Electron Lett, 2000, 36(3): 267. doi: 10.1049/el:20000244
[17]
Sochacki M, Szmidt J, Bakowski M, et al. Influence of annealing on reverse current of 4H-SiC schottky diodes. Diamond Relat Mater, 2002, 11(3-6): 1263. doi: 10.1016/S0925-9635(01)00580-5
[18]
Pérez R, Mestres N, Montserrat J, et al. Barrier inhomogeneities and electrical characteristics of Ni/Ti bilayer schottky contacts on 4H-SiC after high temperature treatments. Phys Status Solidi A, 2005, 202(4): 692. doi: 10.1002/pssa.v202:4
[19]
Pe´rez R, Mestres N, Tournier D, et al. Ni/Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment. Diamond Relat Mater, 2005, 14(3-7): 1146. doi: 10.1016/j.diamond.2004.11.015
[20]
Calcagno L, Ruggiero A, Roccaforte F, et al. Effects of annealing temperature on the degree of inhomogeneity of nickel-silicide/SiC schottky barrier. J Appl Phys, 2005, 98(2): 023713. doi: 10.1063/1.1978969
[21]
Oder T N, Martin P, Adedeji A V, et al. Improved schottky contacts on n-type 4H-SiC using ZrB2 deposited at high temperatures. J Electron Mater, 2007, 36(7): 805. doi: 10.1007/s11664-007-0170-0
[22]
Oder T N, Sung T L, Barlow M, et al. Improved Ni schottky contacts on n-type 4H-SiC using thermal processing. J Electron Mater, 2009, 38(6): 772. doi: 10.1007/s11664-009-0739-x
[23]
Ramesha C K, Reddy V R. Influence of annealing temperature on the electrical and structural properties of palladium schottky contacts on n-type 4H-SiC. Superlattices Microstruct, 2014, 76: 55. doi: 10.1016/j.spmi.2014.09.026
[24]
Han L C, Sun H J, Liu K A, et al. Annealing temperature influence on the degree of inhomogeneity of the schottky barrier in Ti/4H-SiC contacts. Chin Phys B, 2014, 23(12): 127302. doi: 10.1088/1674-1056/23/12/127302
[25]
Pristavu G, Brezeanu G, Badila M, et al. A model to non-uniform Ni schottky contact on SiC annealed at elevated temperatures. Appl Phys Lett, 2015, 106(26): 261605. doi: 10.1063/1.4923468
[26]
Kyoung S, Jung E, Sung M Y. Post-annealing processes to improve inhomogeneity of schottky barrier height in Ti/Al 4H-SiC schottky barrier diode. Microelectron Eng, 2016, 154: 69. doi: 10.1016/j.mee.2016.01.013
[27]
Yun S B, Kim J H, Kang Y H, et al. Optimized annealing temperature of Ti/4H-SiC schottky barrier diode. J Nanosci Nanotechnol, 2017, 17(5): 3406. doi: 10.1166/jnn.2017.14067
[28]
Storasta L, Tsuchida H, Miyazawa T, et al. Enhanced annealing of the Z1/2 defect in 4H-SiC epilayers. J Appl Phys, 2008, 103(1): 013705. doi: 10.1063/1.2829776
[29]
Mannan M A, Nguyen K V, Pak R O, et al. Deep levels in n-type 4H-silicon carbide epitaxial layers investigated by deep-level transient spectroscopy and isochronal annealing studies. IEEE Trans Nucl Sci, 2016, 63(2): 1083. doi: 10.1109/TNS.2016.2535212
[30]
Raja P V, Akhtar J, Rao C V S, et al. Spectroscopic performance studies of 4H-SiC detectors for fusion alpha-particle diagnostics. Nucl Instrum Methods Phys Res A, 2017, 869: 118. doi: 10.1016/j.nima.2017.07.017
[31]
Raja P V, Murty N V L N. Thermal annealing studies in epitaxial 4H-SiC schottky barrier diodes over wide temperature range. Microelectron Reliab, 2018, 87: 213. doi: 10.1016/j.microrel.2018.06.021
[32]
Sochacki M, Kolendo A, Szmidt J, et al. Properties of Pt/4H-SiC schottky diodes with interfacial layer at elevated temperatures. Solid State Electron, 2005, 49(4): 585. doi: 10.1016/j.sse.2005.01.015
[33]
Bhatnagar M, Baliga B J, Kirk H R, et al. Effect of surface inhomogeneities on the electrical characteristics of SiC schottky contacts. IEEE Trans Electron Devices, 1996, 43(1): 150. doi: 10.1109/16.477606
[34]
Defives D, Noblanc O, Dua C, et al. Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC schottky rectifiers. IEEE Trans Electron Devices, 1999, 46(3): 449. doi: 10.1109/16.748861
[35]
Zhang Q, Sudarshan T S. The influence of high-temperature annealing on SiC schottky diode characteristics. J Electron Mater, 2001, 30(11): 1466. doi: 10.1007/s11664-001-0203-z
[36]
Lang D V. Space-charge spectroscopy in semiconductors In: Thermally stimulated relaxation in solids. Berlin: Springer, 1979: 93
[37]
Miller G L, Lang D V, Kimerling L C. Capacitance transient spectroscopy. Ann Rev Mater Sci, 1977, 7: 377. doi: 10.1146/annurev.ms.07.080177.002113
[38]
Sze S M, Ng K K. Physics of semiconductor devices. New Jersey: John Wiley & Sons, 2007
[39]
Dalibor T, Pensl G, Matsunami H, et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Status Solidi A, 1997, 162(1): 199. doi: 10.1002/(ISSN)1521-396X
[40]
Kimoto T, Cooper J A. Fundamentals of silicon carbide technology growth, characterization, devices, and applications. Singapore: John Wiley & Sons, 2014
[41]
Han S Y, Kim K H, Kim J K, et al. Ohmic contact formation mechanism of Ni on n-type 4H-SiC. Appl Phys Lett, 2001, 79(12): 1816. doi: 10.1063/1.1404998
[42]
Han S Y, Lee J. Effect of interfacial reactions on electrical properties of Ni contacts on lightly doped n-type 4H-SiC. J Electrochem Soc, 2002, 149(3): G189. doi: 10.1149/1.1448504
[43]
Han S Y, Shin J, Lee B, et al. Microstructural interpretation of Ni ohmic contact on n-type 4H-SiC. J Vac Sci Technol B, 2002, 20(4): 1496. doi: 10.1116/1.1495506
[44]
Omar S U, Sudarshan T S, Rana T A, et al. Interface trap-induced nonideality in as-deposited Ni/4H-SiC schottky barrier diode. IEEE Trans Electron Devices, 2015, 62(2): 615. doi: 10.1109/TED.2014.2383386
[45]
Zhao J H, Sheng K, Lebron-Velilla R C, Silicon carbide Schottky barrier diode. Int J High Speed Electron, 2005, 15(4): 821. doi: 10.1142/S0129156405003430
[46]
Kim D H, Lee J H, Moon J H, et al. Improvement of the reverse characteristics of Ti/4H-SiC Schottky barrier diodes by thermal treatments. Solid State Phenom, 2007, 124-126: 105. doi: 10.4028/www.scientific.net/SSP.124-126
Fig. 1.  The energy location of the bulk traps (EC – 0.63 eV, EC – 0.89 eV and EC – 1.13 eV) and the interface states (EC – 0.4 eV to EC – 1.04 eV) in the energy band diagram of the Ni/4H-SiC SBDs.

Fig. 3.  (Color online) Annealing effects (400–800 °C) on forward current–voltage (IFVF) characteristics of the gamma irradiated Ni/4H-SiC SBDs.

Fig. 4.  (Color online) Changes in the IFVF characteristics (in semi-log scale) of gamma irradiated Ni/4H-SiC SBDs before and after the annealing temperature of 400 °C.

Fig. 5.  (Color online) The distribution of interface state density (NSS) as a function of ECESS calculated from the forward I–V characteristics of annealed (400–700 °C) gamma irradiated Ni/4H-SiC SBDs.

Fig. 6.  (Color online) Annealing (400–700 °C) induced changes in the reverse current–voltage (IRVR) characteristics of the gamma irradiated Ni/4H-SiC SBDs.

Fig. 2.  (Color online) Changes in the TSCAP spectrum for gamma irradiated Ni/4H-SiC SBDs at different annealing temperatures from 400 to 600 °C.

Fig. 7.  (Color online) (1/C2)–V characteristics at 1 MHz of gamma irradiated Ni/4H-SiC SBDs after heat treatments (400–700 °C).

Fig. 8.  (Color online) (1/C2)–V characteristics at different signal frequencies (1 kHz–1 MHz) of the gamma irradiated Ni/4H-SiC SBDs at the annealing temperatures 400 and 500 °C (shown in inset).

Fig. 9.  Typical C–V characteristics (in diode geometrical capacitance range) obtained at all signal frequencies (1 kHz to 1 MHz) of the gamma irradiated Ni/4H-SiC SBDs for the annealing temperatures ≥ 800 °C.

Fig. 10.  Typical I–V characteristics (−20 to 20 V) of the gamma irradiated Ni/4H-SiC SBDs at the annealing temperature of 950 °C.

Table 1.   Annealing induced changes in the electrical parameters and trap concentrations of the gamma irradiated Ni/4H-SiC SBDs.

Temp. (°C) VF at 1 mA (V) SBH ΦB (eV) Ideality factor (n) Neff (1014 cm−3) NT (1014 cm−3)
P1 P2 G420
Preannealing 1.65 1.2 (SBH1), 1.3 (SBH2) 1.33 (n1), 1.9 (n2) 3.8 ~1.8 ~1.5 ~0.38
400 1.7 1.4 1.32 3.16 ~1.55 ~1.35 ~0.18
500 1.76 1.26 1.7 2.72 ~1.4 ~1.3 $
600 1.9 1.16 1.88 2 ~1.3 ~1.2 $
700 2 1.1 2.24 ~1 * * *
800 3.75 1.01 8 # * * *
900 12.4 0.98 12.6 # * * *
1000 > 20 0.94 16.4 # * * *
1100 > 20 0.88 24 # * * *
$Trap G420 has disappeared from the TSCAP spectrum. #Neff is not obtainable due to the nearly geometrical capacitance. *TSCAP is not measurable.
DownLoad: CSV
[1]
Xin X, Yan F, Koeth T W, et al. Demonstration of the first 4H-SiC EUV detector with large detection area. NASA Technical Report Server, 2005.[online]. Available: https://ntrs.nasa.gov/search.jsp?R=20090022809
[2]
Xin X, Yan F, Koeth T W, et al. Demonstration of 4H-SiC UV single photon counting avalanche photodiode. Electron Lett, 2005, 41(4): 212. doi: 10.1049/el:20057320
[3]
Lees J E, Bassford D J, Bunce E J, et al. Silicon carbide X-ray detectors for planetary exploration. Nucl Instr Meth Phys Res A, 2009, 604(1/2): 174. doi: 10.1016/j.nima.2009.01.050
[4]
Huber M C E, Pauluhn A, Culhane J L, et al. Observing photons in space: a guide to experimental space astronomy. New York: Springer, 2013
[5]
Raja P V, Murty N V L N. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC schottky barrier diodes. J Appl Phys, 2018, 123(16): 161536. doi: 10.1063/1.5003068
[6]
Castaldini A, Cavallini A, Rigutti L, et al. Low temperature annealing of electron irradiation induced defects in 4H-SiC. Appl Phys Lett, 2004, 85(17): 3780. doi: 10.1063/1.1810627
[7]
Iwamoto N, Johnson B C, Ohshima T, et al. Annealing effects on charge collection efficiency of an electron-irradiated 4H-SiC particle detector. 10th international workshop on radiation effects on semiconductor devices for space applications (RASEDA-10), 2013: 42
[8]
Zetterling C M, Lee S K, Ostling M. Schottky and ohmic contacts to SiC, in Process technology for silicon carbide devices. London: INSPEC IET, 2002: 111
[9]
Roccaforte F, La Via F, Baeri A, et al. Structural and electrical properties of Ni/Ti schottky contacts on silicon carbide upon thermal annealing. J Appl Phys, 2004, 96(8): 4313. doi: 10.1063/1.1787138
[10]
Strel’chuk A M, Davydov A V, Tringe J, et al. Characteristics of He+-irradiated Ni schottky diodes based on 4H-SiC epilayer grown by sublimation. Phys Status Solidi C, 2009, 6(12): 2876. doi: 10.1002/pssc.v6:12
[11]
Gupta S K, Azam A, Akhtar J. Improved electrical parameters of vacuum annealed Ni/4H-SiC (0001) schottky barrier diode. Physica B, 2011, 406(15/16), 3030.
[12]
Gupta S K, Pradhan N, Shekhar C, et al. Design, fabrication, and characterization of Ni/4H-SiC (0001) schottky diodes array equipped with field plate and floating guard ring edge termination structures. IEEE Trans Semicond Manuf, 2012, 25(4): 664. doi: 10.1109/TSM.2012.2214245
[13]
Kumar V, Kaminski N, Maan A S, et al. Capacitance roll-off and frequency-dispersion capacitance-conductance phenomena in field plate and guard ring edge-terminated Ni/SiO2/4H-nSiC schottky barrier diodes. Phys Status Solidi A, 2016, 213(1): 193. doi: 10.1002/pssa.v213.1
[14]
Kumar V, Maan A S, Akhtar J. Tailoring surface and electrical properties of Ni/4H-nSiC schottky barrier diodes via selective swift heavy ion irradiation. Phys Status Solidi A, 2018, 215(5): 1700555. doi: 10.1002/pssa.v215.5
[15]
Huang L, Liu B, Zhu Q, et al. Low resistance Ti Ohmic contacts to 4H-SiC by reducing barrier heights without high temperature annealing. J Appl Phys, 2012, 100(26): 263503. doi: 10.1063/1.4730435
[16]
Kcstle A, Wilks S P, Dunstan P R, et al. Improved Ni/SiC schottky diode formation. Electron Lett, 2000, 36(3): 267. doi: 10.1049/el:20000244
[17]
Sochacki M, Szmidt J, Bakowski M, et al. Influence of annealing on reverse current of 4H-SiC schottky diodes. Diamond Relat Mater, 2002, 11(3-6): 1263. doi: 10.1016/S0925-9635(01)00580-5
[18]
Pérez R, Mestres N, Montserrat J, et al. Barrier inhomogeneities and electrical characteristics of Ni/Ti bilayer schottky contacts on 4H-SiC after high temperature treatments. Phys Status Solidi A, 2005, 202(4): 692. doi: 10.1002/pssa.v202:4
[19]
Pe´rez R, Mestres N, Tournier D, et al. Ni/Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment. Diamond Relat Mater, 2005, 14(3-7): 1146. doi: 10.1016/j.diamond.2004.11.015
[20]
Calcagno L, Ruggiero A, Roccaforte F, et al. Effects of annealing temperature on the degree of inhomogeneity of nickel-silicide/SiC schottky barrier. J Appl Phys, 2005, 98(2): 023713. doi: 10.1063/1.1978969
[21]
Oder T N, Martin P, Adedeji A V, et al. Improved schottky contacts on n-type 4H-SiC using ZrB2 deposited at high temperatures. J Electron Mater, 2007, 36(7): 805. doi: 10.1007/s11664-007-0170-0
[22]
Oder T N, Sung T L, Barlow M, et al. Improved Ni schottky contacts on n-type 4H-SiC using thermal processing. J Electron Mater, 2009, 38(6): 772. doi: 10.1007/s11664-009-0739-x
[23]
Ramesha C K, Reddy V R. Influence of annealing temperature on the electrical and structural properties of palladium schottky contacts on n-type 4H-SiC. Superlattices Microstruct, 2014, 76: 55. doi: 10.1016/j.spmi.2014.09.026
[24]
Han L C, Sun H J, Liu K A, et al. Annealing temperature influence on the degree of inhomogeneity of the schottky barrier in Ti/4H-SiC contacts. Chin Phys B, 2014, 23(12): 127302. doi: 10.1088/1674-1056/23/12/127302
[25]
Pristavu G, Brezeanu G, Badila M, et al. A model to non-uniform Ni schottky contact on SiC annealed at elevated temperatures. Appl Phys Lett, 2015, 106(26): 261605. doi: 10.1063/1.4923468
[26]
Kyoung S, Jung E, Sung M Y. Post-annealing processes to improve inhomogeneity of schottky barrier height in Ti/Al 4H-SiC schottky barrier diode. Microelectron Eng, 2016, 154: 69. doi: 10.1016/j.mee.2016.01.013
[27]
Yun S B, Kim J H, Kang Y H, et al. Optimized annealing temperature of Ti/4H-SiC schottky barrier diode. J Nanosci Nanotechnol, 2017, 17(5): 3406. doi: 10.1166/jnn.2017.14067
[28]
Storasta L, Tsuchida H, Miyazawa T, et al. Enhanced annealing of the Z1/2 defect in 4H-SiC epilayers. J Appl Phys, 2008, 103(1): 013705. doi: 10.1063/1.2829776
[29]
Mannan M A, Nguyen K V, Pak R O, et al. Deep levels in n-type 4H-silicon carbide epitaxial layers investigated by deep-level transient spectroscopy and isochronal annealing studies. IEEE Trans Nucl Sci, 2016, 63(2): 1083. doi: 10.1109/TNS.2016.2535212
[30]
Raja P V, Akhtar J, Rao C V S, et al. Spectroscopic performance studies of 4H-SiC detectors for fusion alpha-particle diagnostics. Nucl Instrum Methods Phys Res A, 2017, 869: 118. doi: 10.1016/j.nima.2017.07.017
[31]
Raja P V, Murty N V L N. Thermal annealing studies in epitaxial 4H-SiC schottky barrier diodes over wide temperature range. Microelectron Reliab, 2018, 87: 213. doi: 10.1016/j.microrel.2018.06.021
[32]
Sochacki M, Kolendo A, Szmidt J, et al. Properties of Pt/4H-SiC schottky diodes with interfacial layer at elevated temperatures. Solid State Electron, 2005, 49(4): 585. doi: 10.1016/j.sse.2005.01.015
[33]
Bhatnagar M, Baliga B J, Kirk H R, et al. Effect of surface inhomogeneities on the electrical characteristics of SiC schottky contacts. IEEE Trans Electron Devices, 1996, 43(1): 150. doi: 10.1109/16.477606
[34]
Defives D, Noblanc O, Dua C, et al. Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC schottky rectifiers. IEEE Trans Electron Devices, 1999, 46(3): 449. doi: 10.1109/16.748861
[35]
Zhang Q, Sudarshan T S. The influence of high-temperature annealing on SiC schottky diode characteristics. J Electron Mater, 2001, 30(11): 1466. doi: 10.1007/s11664-001-0203-z
[36]
Lang D V. Space-charge spectroscopy in semiconductors In: Thermally stimulated relaxation in solids. Berlin: Springer, 1979: 93
[37]
Miller G L, Lang D V, Kimerling L C. Capacitance transient spectroscopy. Ann Rev Mater Sci, 1977, 7: 377. doi: 10.1146/annurev.ms.07.080177.002113
[38]
Sze S M, Ng K K. Physics of semiconductor devices. New Jersey: John Wiley & Sons, 2007
[39]
Dalibor T, Pensl G, Matsunami H, et al. Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys Status Solidi A, 1997, 162(1): 199. doi: 10.1002/(ISSN)1521-396X
[40]
Kimoto T, Cooper J A. Fundamentals of silicon carbide technology growth, characterization, devices, and applications. Singapore: John Wiley & Sons, 2014
[41]
Han S Y, Kim K H, Kim J K, et al. Ohmic contact formation mechanism of Ni on n-type 4H-SiC. Appl Phys Lett, 2001, 79(12): 1816. doi: 10.1063/1.1404998
[42]
Han S Y, Lee J. Effect of interfacial reactions on electrical properties of Ni contacts on lightly doped n-type 4H-SiC. J Electrochem Soc, 2002, 149(3): G189. doi: 10.1149/1.1448504
[43]
Han S Y, Shin J, Lee B, et al. Microstructural interpretation of Ni ohmic contact on n-type 4H-SiC. J Vac Sci Technol B, 2002, 20(4): 1496. doi: 10.1116/1.1495506
[44]
Omar S U, Sudarshan T S, Rana T A, et al. Interface trap-induced nonideality in as-deposited Ni/4H-SiC schottky barrier diode. IEEE Trans Electron Devices, 2015, 62(2): 615. doi: 10.1109/TED.2014.2383386
[45]
Zhao J H, Sheng K, Lebron-Velilla R C, Silicon carbide Schottky barrier diode. Int J High Speed Electron, 2005, 15(4): 821. doi: 10.1142/S0129156405003430
[46]
Kim D H, Lee J H, Moon J H, et al. Improvement of the reverse characteristics of Ti/4H-SiC Schottky barrier diodes by thermal treatments. Solid State Phenom, 2007, 124-126: 105. doi: 10.4028/www.scientific.net/SSP.124-126
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3843 Times PDF downloads: 94 Times Cited by: 0 Times

    History

    Received: 09 August 2018 Revised: 25 September 2018 Online: Accepted Manuscript: 06 December 2018Uncorrected proof: 12 December 2018Published: 01 February 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      P. Vigneshwara Raja, N. V. L. Narasimha Murty. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. Journal of Semiconductors, 2019, 40(2): 022804. doi: 10.1088/1674-4926/40/2/022804 P V Raja, N V L N Murty, Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. J. Semicond., 2019, 40(2): 022804. doi: 10.1088/1674-4926/40/2/022804.Export: BibTex EndNote
      Citation:
      P. Vigneshwara Raja, N. V. L. Narasimha Murty. Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. Journal of Semiconductors, 2019, 40(2): 022804. doi: 10.1088/1674-4926/40/2/022804

      P V Raja, N V L N Murty, Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics[J]. J. Semicond., 2019, 40(2): 022804. doi: 10.1088/1674-4926/40/2/022804.
      Export: BibTex EndNote

      Thermally annealed gamma irradiated Ni/4H-SiC Schottky barrier diode characteristics

      doi: 10.1088/1674-4926/40/2/022804
      More Information
      • Corresponding author: Email: nnmurty@iittp.ac.in
      • Received Date: 2018-08-09
      • Revised Date: 2018-09-25
      • Published Date: 2019-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return