SEMICONDUCTOR INTEGRATED CIRCUITS

A 20-25.5 GHz VCO using a new variable inductor for K band application

Ning Zhu, Wei Li, Ning Li and Junyan Ren

+ Author Affiliations

 Corresponding author: Li Wei, w-li@fudan.edu.cn

PDF

Abstract: A novel transformer-type variable inductor is proposed to achieve a wide tuning range at frequencies as high as K band. The variable inductor is designed, and an intuitive model is built to analyze its performance by HFSS. A lot of mathematical analysis is done in detail. A VCO using the proposed variable inductor is designed with TSMC 0.13 μm CMOS technology for verification. The frequency tuning range of the VCO depends on the proposed variable inductor. The phase noise of the VCO depends on the quality of the LC tank (including the proposed variable inductor and varactors). So a specific AMOS varactor is implemented to improve its quality factor. The VCO is simulated at three typical TSMC fabrication corners (TT, FF, SS) to predict its measure results. The post simulation results shows that the VCO achieves a 20-25.5 GHz continuous tuning range. Its phase noise results at 1 MHz offset are -108.4 dBc/Hz and -100.5 dBc/Hz respectively at the tuning frequencies of 19.6 GHz and 25.5 GHz. The VCO draws only 3 to 6 mA from a 1.2 V power supply.

Key words: variable inductormodelingAMOS varactorwideband



[1]
Berny A D, Niknejad A M, Meyer R G. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE J Solid-State Circuits, 2005, 40(4):909 doi: 10.1109/JSSC.2004.842851
[2]
Park P, Kim C S, Park M Y, et al. Variable inductance multilayer inductor with MOSFET switch Control. IEEE Electron Device Lett, 2004, 25(3):144 doi: 10.1109/LED.2003.822670
[3]
Yim S M, Kenneth K O. Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO. IEEE Trans Microw Theory Tech, 2006, 54(1):74 doi: 10.1109/TMTT.2005.856102
[4]
Zou W, Chen X, Dai K, et al. Switched-inductor VCO based on tapped vertical solenoid inductors. IEEE Electron Lett, 2012, 48(9):509 doi: 10.1049/el.2012.0341
[5]
Choi D H, Lee H S, Yoon J B. Linearly variable inductor with RF MEMS switches to enlarge a continuous tuning range. IEEE Transducers, 2009, 10(6):573 http://ieeexplore.ieee.org/abstract/document/5285389/
[6]
Hung C M, Ho Y C, Wu I C, et al. High-Q capacitors implemented in a CMOS process for low-power wireless applications. IEEE Trans Microw Theory Tech, 1998, 46(5):505 doi: 10.1109/22.668648
[7]
Razavi B. A 60 GHz CMOS receiver front-end. IEEE J Solid-State Circuits, 2006, 41(1):17 doi: 10.1109/JSSC.2005.858626
[8]
Liu S L, Tian X C, Hao Y. A bias-varied low-power K-band VCO in 90 nm CMOS technology. IEEE Microw Wireless Compon Lett, 2012, 22(6):321 doi: 10.1109/LMWC.2012.2197817
[9]
Yi X, Boon C C, Lin J F, et al. A 100 GHz transformer-based varactor-less VCO with 11.2% tuning range in 65 nm CMOS technology. IEEE ESSCIRC, 2012:293 doi: 10.1088/1674-4926/34/12/125005
[10]
Soltanian B, Kinget P. A low phase noise quadrature LC-VCO using capacitive common-source coupling. IEEE ESSCIRC, 2006:436 http://ieeexplore.ieee.org/abstract/document/4099797/
Fig. 1.  Topology of a capacitively-tuned LC-VCO circuit.

Fig. 2.  Variable inductor. (a) Switch-type variable inductor. (b) MEMS-type variable inductor. (c) Transformer-type inductor.

Fig. 3.  Top view of the proposed transformer type variable inductor.

Fig. 4.  The testbench of the proposed variable inductor.

Fig. 5.  The simulated inductance of $L_{1}$, $L_{2}$, $L_{3}$, $L_{4}$, $L_{5}$.

Fig. 6.  The simulated quality factor of $L_{1}$, $L_{2}$, $L_{3}$, $L_{4}$, $L_{5}$.

Fig. 7.  The simulated coupling coefficients between $L_{1}$, $L_{2}$, $L_{3}$, $L_{4}$, $L_{5}$.

Fig. 8.  Model of the proposed variable inductor.

Fig. 9.  The basic schematic of a two-coil transformer-type variable inductor.

Fig. 10.  The equivalent circuit of a basic two-coil transformer type variable inductor when MOSFET M1 is ON

Fig. 11.  The equivalent circuit of a basic two-coil transformer-type variable inductor when MOSFET M1 is OFF.

Fig. 12.  The quality factor of the variable inductor versus the angular frequency.

Fig. 13.  $C$-$V$ and $Q$-$V$ characteristics of the MOS varactor with different dimensions.

Fig. 14.  The VCO using the proposed transformer-type variable inductor and its buffer circuit.

Fig. 15.  The simplified equivalent circuit of the transmission line.

Fig. 16.  The matching circuit of the output buffer.

Fig. 17.  Layout of the VCO.

Fig. 18.  Tuning curves of the VCO.

Fig. 19.  Phase noise of the VCO.

Fig. 20.  Matching characteristics of the output buffer.

Fig. 21.  Phase noise variation due to process variation.

Table 1.   Parameters of the proposed variable inductor. Unit:um

Table 2.   Corner simulation results of the VCO tuning range

Table 3.   Corner simulation results of the VCO phase noise @ 1 MHz offset.

Table 4.   Performance comparison with other works.

A-1.   Relationship between ωo1 and ωs1 dependent on "n" and "K".

A-2.   Relationship between ωo2 and ωs1 dependent on "n" and "K".

[1]
Berny A D, Niknejad A M, Meyer R G. A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration. IEEE J Solid-State Circuits, 2005, 40(4):909 doi: 10.1109/JSSC.2004.842851
[2]
Park P, Kim C S, Park M Y, et al. Variable inductance multilayer inductor with MOSFET switch Control. IEEE Electron Device Lett, 2004, 25(3):144 doi: 10.1109/LED.2003.822670
[3]
Yim S M, Kenneth K O. Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO. IEEE Trans Microw Theory Tech, 2006, 54(1):74 doi: 10.1109/TMTT.2005.856102
[4]
Zou W, Chen X, Dai K, et al. Switched-inductor VCO based on tapped vertical solenoid inductors. IEEE Electron Lett, 2012, 48(9):509 doi: 10.1049/el.2012.0341
[5]
Choi D H, Lee H S, Yoon J B. Linearly variable inductor with RF MEMS switches to enlarge a continuous tuning range. IEEE Transducers, 2009, 10(6):573 http://ieeexplore.ieee.org/abstract/document/5285389/
[6]
Hung C M, Ho Y C, Wu I C, et al. High-Q capacitors implemented in a CMOS process for low-power wireless applications. IEEE Trans Microw Theory Tech, 1998, 46(5):505 doi: 10.1109/22.668648
[7]
Razavi B. A 60 GHz CMOS receiver front-end. IEEE J Solid-State Circuits, 2006, 41(1):17 doi: 10.1109/JSSC.2005.858626
[8]
Liu S L, Tian X C, Hao Y. A bias-varied low-power K-band VCO in 90 nm CMOS technology. IEEE Microw Wireless Compon Lett, 2012, 22(6):321 doi: 10.1109/LMWC.2012.2197817
[9]
Yi X, Boon C C, Lin J F, et al. A 100 GHz transformer-based varactor-less VCO with 11.2% tuning range in 65 nm CMOS technology. IEEE ESSCIRC, 2012:293 doi: 10.1088/1674-4926/34/12/125005
[10]
Soltanian B, Kinget P. A low phase noise quadrature LC-VCO using capacitive common-source coupling. IEEE ESSCIRC, 2006:436 http://ieeexplore.ieee.org/abstract/document/4099797/
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1989 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 03 May 2013 Revised: 15 July 2013 Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ning Zhu, Wei Li, Ning Li, Junyan Ren. A 20-25.5 GHz VCO using a new variable inductor for K band application[J]. Journal of Semiconductors, 2013, 34(12): 125005. doi: 10.1088/1674-4926/34/12/125005 N Zhu, W Li, N Li, J Y Ren. A 20-25.5 GHz VCO using a new variable inductor for K band application[J]. J. Semicond., 2013, 34(12): 125005. doi: 10.1088/1674-4926/34/12/125005.Export: BibTex EndNote
      Citation:
      Ning Zhu, Wei Li, Ning Li, Junyan Ren. A 20-25.5 GHz VCO using a new variable inductor for K band application[J]. Journal of Semiconductors, 2013, 34(12): 125005. doi: 10.1088/1674-4926/34/12/125005

      N Zhu, W Li, N Li, J Y Ren. A 20-25.5 GHz VCO using a new variable inductor for K band application[J]. J. Semicond., 2013, 34(12): 125005. doi: 10.1088/1674-4926/34/12/125005.
      Export: BibTex EndNote

      A 20-25.5 GHz VCO using a new variable inductor for K band application

      doi: 10.1088/1674-4926/34/12/125005
      Funds:

      the National Twelve-Five Project 513***

      Project supported by the National Natural Science Foundation of China (No. 61176029) and the National Twelve-Five Project (No. 513***)

      the National Natural Science Foundation of China 61176029

      More Information
      • Corresponding author: Li Wei, w-li@fudan.edu.cn
      • Received Date: 2013-05-03
      • Revised Date: 2013-07-15
      • Published Date: 2013-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return