ARTICLES

Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si

P. Satapathy1, A. Pfuch2, R. Grunwald3 and S. K. Das1,

+ Author Affiliations

 Corresponding author: S. K. Das, skdasfpy@kiit.ac.in

PDF

Turn off MathJax

Abstract: Laser induced periodic surface structures (LIPSS) represent a kind of top down approach to produce highly reproducible nano/microstructures without going for any sophisticated process of lithography. This method is much simpler and cost effective. In this work, LIPSS on Si surfaces were generated using femtosecond laser pulses of 800 nm wavelength. Photocatalytic substrates were prepared by depositing TiO2 thin films on top of the structured and unstructured Si wafer. The coatings were produced by sputtering from a Ti target in two different types of oxygen atmospheres. In first case, the oxygen pressure within the sputtering chamber was chosen to be high (3 × 10–2 mbar) whereas it was one order of magnitude lower in second case (2.1 × 10–3 mbar). In photocatalytic dye decomposition study of Methylene blue dye it was found that in the presence of LIPSS the activity can be enhanced by 2.1 and 3.3 times with high pressure and low pressure grown TiO2 thin films, respectively. The increase in photocatalytic activity is attributed to the enlargement of effective surface area. In comparative study, the dye decomposition rates of TiO2 thin films grown on LIPSS are found to be much higher than the value for standard reference thin film material Pilkington ActivTM.

Key words: laser induced periodic surface structuresnanoripplessiliconphotocatalytic dye decompositionTiO2 thin filmfemtosecond laser pulses



[1]
Chang H W, Tsai Y C, Cheng C W, et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J Colloid Interface Sci, 2011, 360, 305 doi: 10.1016/j.jcis.2011.04.005
[2]
Messaoudi H, Das S K, Lange J, et al. Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules. In: Progress in Nonlinear Nano-Optics. Basel: Springer International Publishing, 2014, 207
[3]
Long J, Fan P, Zhong M, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci, 2014, 31, 461 doi: 10.1016/j.apsusc.2014.05.090
[4]
Wang Z, Zhao Q, Wang C. Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines, 2015, 6, 1606 doi: 10.3390/mi6111444
[5]
Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses. Appl Phys Lett, 2008, 92, 041914 doi: 10.1063/1.2834902
[6]
Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Exp, 2010, 18, 2913 doi: 10.1364/OE.18.002913
[7]
Vorobyev A Y, Makin V S, Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett, 2009, 102, 234301 doi: 10.1103/PhysRevLett.102.234301
[8]
Hwang T Y, Vorobyev A Y, Guo C. Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals. Phys Rev B, 2009, 79, 085425 doi: 10.1103/PhysRevB.79.085425
[9]
Itina R T E, Vervisch V, Halbwax M, et al. Study on laser induced periodic structures and photovoltaic application. AIP Conf Proc, 2010, 1278, 576 doi: 10.1063/1.3507149
[10]
Chen J T, Lai W C, Kao Y J, et al. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt Express, 2012, 20, 5689 doi: 10.1364/OE.20.005689
[11]
Das S K, Andreev A, Messaoudi H, et al. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration. J Appl Phys, 2016, 119, 13101 doi: 10.1063/1.4939294
[12]
Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir, 2006, 22, 4917 doi: 10.1021/la053374k
[13]
Shimotsuma Y, Sakakura M, Miura K, et al. Application of femtosecond-laser induced nanostructures in optical memory. J Nanosci Nanotech, 2007, 7, 94 doi: 10.1166/jnn.2007.007
[14]
Yang C, Dong W, Cui G, et al. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci Rep, 2017, 7, 3973 doi: 10.1038/s41598-017-04398-x
[15]
Julkapli N, Bagheri S, Hamid S B A. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J, 2014, 692307 doi: 10.1155/2014/692307
[16]
Tölke T, Heft A, Pfuch A. Photocatalytically active multi-layer systems with enhanced transmission. Thin Solid Films, 2008, 516, 4578 doi: 10.1016/j.tsf.2007.05.088
[17]
Tölke T, Kriltz A, Rechtenbach A. The influence of pressure on the structure and the self-cleaning properties of sputter deposited TiO2 layers. Thin Solid Films, 2010, 518, 4242 doi: 10.1016/j.tsf.2009.12.091
[18]
Granados E, Calderon M M, Krzywinski J, et al. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring. Opt Mat Exp, 2017, 7, 3389 doi: 10.1364/OME.7.003389
[19]
Kuladeep R, Sahoo C, Rao D N. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser. Appl Phys Lett, 2014, 104, 222103 doi: 10.1063/1.4881556
[20]
Diesen V, Dunnill C W, Parkin I P, et al. Silver enhanced TiO2 thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane. Dalton Trans, 2014, 43, 344 doi: 10.1039/C3DT52270A
[21]
Shuang S, Lv R, Xie Z, et al. Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci Rep, 2016, 6, 26670 doi: 10.1038/srep26670
[22]
Cui W, Xue D, Yuan X, et al. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci, 2017, 411, 105 doi: 10.1016/j.apsusc.2017.03.169
[23]
Chen J, Wang W, Li W, et al. Roles of crystal surface in Pt-loaded titania for photocatalytic conversion of organic pollutants: a first-principle theoretical calculation. ACS Appl Mater Interfaces, 2015, 7, 12671 doi: 10.1021/acsami.5b00079
[24]
Marelli M, Evangelisti C, Diamanti M V, et al. TiO2 nanotubes arrays loaded with ligand-free Au nanoparticles: enhancement in photocatalytic activity. ACS Appl Mater Interfaces, 2016, 8, 31051 doi: 10.1021/acsami.6b11436
[25]
Wang H L, Liu X H. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property. J Inorg Mater, 2016, 31, 555 doi: 10.15541/jim20150535
[26]
Cheng H, Hsu C, Chen Y. Substrate materials and deposition temperature dependent growth characteristics and photocatalytic properties of ALD TiO2 films. J Electrochem Soc, 2009, 156, 275 doi: 10.1149/1.3138723
[27]
Shih P, Huang C, Chen T, et al. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process. Mater Res Bull, 2014, 52, 177 doi: 10.1016/j.materresbull.2014.01.023
[28]
Zheng S K, Wang T M, Hao W C, et al. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum, 2002, 65, 155 doi: 10.1016/S0042-207X(01)00424-9
[29]
Bayati M R, Alipour H M, Joshi S, et al. Thin-film epitaxy and enhancement of photocatalytic activity of anatase/zirconia heterostructures by nanosecond excimer laser treatment. J Phys Chem C, 2013, 117, 7138 doi: 10.1021/jp400545t
[30]
Liu P, Li W Y, Zhang J B, et al. Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J Mater Res, 2011, 26, 1532 doi: 10.1557/jmr.2011.124
[31]
Álvaro A, Ramírez S, Próspero A P, et al. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quím Nova, 2012, 35, 1931 doi: 10.1590/S0100-40422012001000008
[32]
Liu J, Zhang J. Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J Mater Res, 2016, 31, 1448 doi: 10.1557/jmr.2016.124
[33]
Cámara R M, Crespo E, Portela R, et al. Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catal Today, 2014, 230, 145 doi: 10.1016/j.cattod.2013.10.049
[34]
Cheng H E, Hung C H, Yu I S, et al. Strongly enhancing photocatalytic activity of TiO2 thin films by multi-heterojunction technique. Catalysts, 2018, 8, 440 doi: 10.3390/catal8100440
Fig. 1.  (Color online) (a) FESEM images of SiLIPSS (double sided arrow : polarization direction of laser pulses). (b) Related spatial frequency map obtained by 2D-FFT.

Fig. 2.  (Color online) UV photocatalytic degradation of MB dye (plot of C/C0 versus time) with high pressure grown TiO2 thin films grown on Si substrate containing LIPSS (HPTiO2-SiLIPSS, quadratic symbols) and no LIPSS (HPTiO2-NoLIPSS, circles).

Fig. 3.  (Color online) UV photocatalytic degradation of MB dye (plot of C/C0 versus time) with low pressure grown TiO2 thin films grown on Si substrate containing LIPSS (LPTiO2-SiLIPSS, quadratic symbols) and no LIPSS (LPTiO2-NoLIPSS, circles).

Fig. 4.  (Color online) ln(C0/C) versus photocatalysis time graph for high pressure grown TiO2 thin film on Si substrate containing no LIPSS (HPTiO2-NoLIPSS) and LIPSS (HPTiO2-SiLIPSS).

Fig. 5.  (Color online) ln(C0/C) versus photocatalysis time graph for low pressure grown TiO2 thin film on Si substrate containing no LIPSS (LPTiO2-NoLIPSS) and LIPSS (LPTiO2-SiLIPSS).

Fig. 6.  (Color online) (a) AFM image of the LIPSS on Si (Inset: Selected line for cross-sectional analysis). (b) Cross-sectional analysis across the selected line of (a).

Fig. 7.  (Color online) Comparative dye decomposition activity of various samples with respect to standard reference thin film Pilkington ActivTM after 4 h of photocatalysis.

Table 1.   Nomenclature and description of samples.

Name of sampleDetails of sample
HPTiO2-SiLIPSSHigh pressure grown TiO2 thin film on Si surface containing LIPSS
HPTiO2-NoLIPSSHigh pressure grown TiO2 thin film on Si surface containing no LIPSS
LPTiO2-SiLIPSSLow pressure grown TiO2 thin film on Si surface containing LIPSS
LPTiO2-NoLIPSSLow pressure grown TiO2 thin film on Si surface containing no LIPSS
DownLoad: CSV

Table 2.   Reaction rate constants of high pressure grown TiO2 thin film on Si substrate containing no LIPSS (HPTiO2-NoLIPSS) and LIPSS (HPTiO2-SiLIPSS).

Name of samplek (h–1)Enhancement factor
HPTiO2-NoLIPSS0.262.1
HPTiO2-SiLIPSS0.54
DownLoad: CSV

Table 3.   Reaction rate constant of low pressure grown TiO2 thin film on Si substrate containing no LIPSS (LPTiO2-NoLIPSS) and LIPSS (LPTiO2-SiLIPSS).

Name of samplek (h–1)Enhancement factor
LPTiO2-NoLIPSS0.093.3
HPTiO2-SiLIPSS0.31
DownLoad: CSV
[1]
Chang H W, Tsai Y C, Cheng C W, et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering. J Colloid Interface Sci, 2011, 360, 305 doi: 10.1016/j.jcis.2011.04.005
[2]
Messaoudi H, Das S K, Lange J, et al. Femtosecond-laser induced periodic surface structures for surface enhanced Raman spectroscopy of biomolecules. In: Progress in Nonlinear Nano-Optics. Basel: Springer International Publishing, 2014, 207
[3]
Long J, Fan P, Zhong M, et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures. Appl Surf Sci, 2014, 31, 461 doi: 10.1016/j.apsusc.2014.05.090
[4]
Wang Z, Zhao Q, Wang C. Reduction of friction of metals using laser-induced periodic surface nanostructures. Micromachines, 2015, 6, 1606 doi: 10.3390/mi6111444
[5]
Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses. Appl Phys Lett, 2008, 92, 041914 doi: 10.1063/1.2834902
[6]
Dusser B, Sagan Z, Soder H, et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Exp, 2010, 18, 2913 doi: 10.1364/OE.18.002913
[7]
Vorobyev A Y, Makin V S, Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys Rev Lett, 2009, 102, 234301 doi: 10.1103/PhysRevLett.102.234301
[8]
Hwang T Y, Vorobyev A Y, Guo C. Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals. Phys Rev B, 2009, 79, 085425 doi: 10.1103/PhysRevB.79.085425
[9]
Itina R T E, Vervisch V, Halbwax M, et al. Study on laser induced periodic structures and photovoltaic application. AIP Conf Proc, 2010, 1278, 576 doi: 10.1063/1.3507149
[10]
Chen J T, Lai W C, Kao Y J, et al. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Opt Express, 2012, 20, 5689 doi: 10.1364/OE.20.005689
[11]
Das S K, Andreev A, Messaoudi H, et al. Highly periodic laser-induced nanostructures on thin Ti and Cu foils for potential application in laser ion acceleration. J Appl Phys, 2016, 119, 13101 doi: 10.1063/1.4939294
[12]
Baldacchini T, Carey J E, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir, 2006, 22, 4917 doi: 10.1021/la053374k
[13]
Shimotsuma Y, Sakakura M, Miura K, et al. Application of femtosecond-laser induced nanostructures in optical memory. J Nanosci Nanotech, 2007, 7, 94 doi: 10.1166/jnn.2007.007
[14]
Yang C, Dong W, Cui G, et al. Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD. Sci Rep, 2017, 7, 3973 doi: 10.1038/s41598-017-04398-x
[15]
Julkapli N, Bagheri S, Hamid S B A. Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J, 2014, 692307 doi: 10.1155/2014/692307
[16]
Tölke T, Heft A, Pfuch A. Photocatalytically active multi-layer systems with enhanced transmission. Thin Solid Films, 2008, 516, 4578 doi: 10.1016/j.tsf.2007.05.088
[17]
Tölke T, Kriltz A, Rechtenbach A. The influence of pressure on the structure and the self-cleaning properties of sputter deposited TiO2 layers. Thin Solid Films, 2010, 518, 4242 doi: 10.1016/j.tsf.2009.12.091
[18]
Granados E, Calderon M M, Krzywinski J, et al. Enhancement of surface area and wettability properties of boron doped diamond by femtosecond laser-induced periodic surface structuring. Opt Mat Exp, 2017, 7, 3389 doi: 10.1364/OME.7.003389
[19]
Kuladeep R, Sahoo C, Rao D N. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser. Appl Phys Lett, 2014, 104, 222103 doi: 10.1063/1.4881556
[20]
Diesen V, Dunnill C W, Parkin I P, et al. Silver enhanced TiO2 thin films: photocatalytic characterization using aqueous solutions of tris(hydroxymethyl)aminomethane. Dalton Trans, 2014, 43, 344 doi: 10.1039/C3DT52270A
[21]
Shuang S, Lv R, Xie Z, et al. Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci Rep, 2016, 6, 26670 doi: 10.1038/srep26670
[22]
Cui W, Xue D, Yuan X, et al. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Appl Surf Sci, 2017, 411, 105 doi: 10.1016/j.apsusc.2017.03.169
[23]
Chen J, Wang W, Li W, et al. Roles of crystal surface in Pt-loaded titania for photocatalytic conversion of organic pollutants: a first-principle theoretical calculation. ACS Appl Mater Interfaces, 2015, 7, 12671 doi: 10.1021/acsami.5b00079
[24]
Marelli M, Evangelisti C, Diamanti M V, et al. TiO2 nanotubes arrays loaded with ligand-free Au nanoparticles: enhancement in photocatalytic activity. ACS Appl Mater Interfaces, 2016, 8, 31051 doi: 10.1021/acsami.6b11436
[25]
Wang H L, Liu X H. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property. J Inorg Mater, 2016, 31, 555 doi: 10.15541/jim20150535
[26]
Cheng H, Hsu C, Chen Y. Substrate materials and deposition temperature dependent growth characteristics and photocatalytic properties of ALD TiO2 films. J Electrochem Soc, 2009, 156, 275 doi: 10.1149/1.3138723
[27]
Shih P, Huang C, Chen T, et al. Enhancement on photocatalytic activity of an amorphous titanium oxide film with nano-textured surface by selective-fluorination etching process. Mater Res Bull, 2014, 52, 177 doi: 10.1016/j.materresbull.2014.01.023
[28]
Zheng S K, Wang T M, Hao W C, et al. Improvement of photocatalytic activity of TiO2 thin film by Sn ion implantation. Vacuum, 2002, 65, 155 doi: 10.1016/S0042-207X(01)00424-9
[29]
Bayati M R, Alipour H M, Joshi S, et al. Thin-film epitaxy and enhancement of photocatalytic activity of anatase/zirconia heterostructures by nanosecond excimer laser treatment. J Phys Chem C, 2013, 117, 7138 doi: 10.1021/jp400545t
[30]
Liu P, Li W Y, Zhang J B, et al. Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2. J Mater Res, 2011, 26, 1532 doi: 10.1557/jmr.2011.124
[31]
Álvaro A, Ramírez S, Próspero A P, et al. Enhanced photocatalytic activity of TiO2 films by modification with polyethylene glycol. Quím Nova, 2012, 35, 1931 doi: 10.1590/S0100-40422012001000008
[32]
Liu J, Zhang J. Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization. J Mater Res, 2016, 31, 1448 doi: 10.1557/jmr.2016.124
[33]
Cámara R M, Crespo E, Portela R, et al. Enhanced photocatalytic activity of TiO2 thin films on plasma-pretreated organic polymers. Catal Today, 2014, 230, 145 doi: 10.1016/j.cattod.2013.10.049
[34]
Cheng H E, Hung C H, Yu I S, et al. Strongly enhancing photocatalytic activity of TiO2 thin films by multi-heterojunction technique. Catalysts, 2018, 8, 440 doi: 10.3390/catal8100440
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3432 Times PDF downloads: 72 Times Cited by: 0 Times

    History

    Received: 15 August 2019 Revised: 21 September 2019 Online: Accepted Manuscript: 18 October 2019Uncorrected proof: 21 October 2019Published: 01 March 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      P. Satapathy, A. Pfuch, R. Grunwald, S. K. Das. Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. Journal of Semiconductors, 2020, 41(3): 032303. doi: 10.1088/1674-4926/41/3/032303 P Satapathy, A Pfuch, R Grunwald, S K Das, Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. J. Semicond., 2020, 41(3): 032303. doi: 10.1088/1674-4926/41/3/032303.Export: BibTex EndNote
      Citation:
      P. Satapathy, A. Pfuch, R. Grunwald, S. K. Das. Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. Journal of Semiconductors, 2020, 41(3): 032303. doi: 10.1088/1674-4926/41/3/032303

      P Satapathy, A Pfuch, R Grunwald, S K Das, Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si[J]. J. Semicond., 2020, 41(3): 032303. doi: 10.1088/1674-4926/41/3/032303.
      Export: BibTex EndNote

      Enhancement of photocatalytic activity by femtosecond-laser induced periodic surface structures of Si

      doi: 10.1088/1674-4926/41/3/032303
      More Information
      • Corresponding author: skdasfpy@kiit.ac.in
      • Received Date: 2019-08-15
      • Revised Date: 2019-09-21
      • Published Date: 2020-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return