SEMICONDUCTOR INTEGRATED CIRCUITS

An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution

Yue Han, Shushan Qiao and Yong Hei

+ Author Affiliations

 Corresponding author: Han Yue, Email:hanyue@ime.ac.cn

PDF

Abstract: The linear amplification with nonlinear component transmitter is a promising solution to high efficiency and high linearity amplification for non-constant envelope signals. An all-digital synthesizable baseband for a delay-based LINC transmitter is implemented. This paper proposes a standard-cell based synthesizable methodology which can be applied in the ASIC process efficiently without performance degradation compared to the manual layout. A scheme to overcome the limited resolution of conventional phase detectors is proposed. It employs alternative phase detector structures to provide reconfigurability for higher resolution after fabricating, resulting in an 11 ps resolution improvement. Due to the PVT variation, an adaptive calibration scheme focusing on the inherent imbalance between two delay lines is depicted, which reveals an effective EVM enhancement of 5.37 dB. This baseband chip is implemented in 0.13 μm CMOS technology, and the transmitter with the baseband has an EVM of -28.96 dB and an ACPR of -29.51 dB, meeting the design requirement.

Key words: low powerlinear amplification with nonlinear component (LINC)all-digitalsynthesizable



[1]
Tai W, Xu H T. Ashokeack-off power efficiency enhancement. IEEE J Solid-State Circuits, 2012, 43(12):1646
[2]
Cui Jie, Chen Lei, Kang Chunlei, et al. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n. Journal of Semiconductors, 2013, 34(6):065001 doi: 10.1088/1674-4926/34/6/065001
[3]
Hur J, Kim H, Lee O, et al. Multi-level LINC transmitter with non-isolated power combiner. Electron Lett, 2013, 49(25):1624 doi: 10.1049/el.2013.3117
[4]
Cox D C. Linear amplification with nonlinear components. IEEE Trans Commun, 1974, COM-22(12):1942 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1092141
[5]
Chireix H. High power outphasing modulation. Proc IRE, 1935, 23(11):1370 doi: 10.1109/JRPROC.1935.227299
[6]
Shi B, Sundström L. A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters. IEEE J Solid-State Circuits, 2000, 35(7):987 doi: 10.1109/4.848207
[7]
Shi B, Sundström L. An IF CMOS signal component separator chip for LINC transmitter. Proc IEEE Custom Integrated Circuits Conf, 2001, 5:49 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=929721
[8]
Panseri L, Romanó L, Levantino S, et al. Low-power signal component separator for a 64-QAM 802.11 LINC transmitter. IEEE J Solid-State Circuits, 2008, 43(5):1274 doi: 10.1109/JSSC.2008.920321
[9]
Ravi A, Madoglio P, Xu H T, et al. A 2.4 GHz 20-40-MHz channel WLAN digital outphasing transmitter utilizing a delay-based wideband phase modulator in 32-nm CMOS. IEEE J Solid-State Circuits, 2012, 47(12):3184 doi: 10.1109/JSSC.2012.2216671
[10]
Li Y, Li Z P, Uyar O, et al. High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers. IEEE J Solid-State Circuits, 2013, 48(2):369 doi: 10.1109/JSSC.2012.2229071
[11]
Chen T W, Tsai P Y, Yu J Y, et al. A sub-mW all-digital signal component separator with branch mismatch compensation for OFDM LINC transmitter. IEEE J Solid-State Circuits, 2011, 46(11):2514 doi: 10.1109/JSSC.2011.2164133
[12]
Chung C C, Lee C Y. An all-digital phase-locked loop for high speed clock generation. IEEE J Solid-State Circuits, 2003, 38(2):347 doi: 10.1109/JSSC.2002.807398
Fig. 1.  Splitting $s$ into $s_{1}$ and $s_{2}$.

Fig. 2.  Delay-based LINC transmitter.

Fig. 3.  Proposed digital baseband architecture for delay-based LINC transmitter.

Fig. 4.  Digitally controlled delay line structure.

Fig. 5.  Capacitance provided to the delay line sweeping over the invertor output voltage for a single gate.

Fig. 6.  The DCDL output delay over coarse-tune codeword $F$.

Fig. 7.  The DCDL output delay over coarse-tune codeword $C$.

Fig. 8.  Reconfigurable structure for phase detector.

Fig. 9.  Waveform of the signals in the phase detector.

Fig. 10.  The proposed adaptive calibration scheme.

Fig. 11.  Die photograph of the digital baseband for the delay-based LINC transmitter.

Fig. 12.  Measured DCDL output delay of different conditions with different coarse-tune codewords.

Fig. 13.  Signal up changes with codeword $F_{2}'$.

Fig. 14.  Measured waveforms of two DCDL branches for a given phase difference.

Fig. 15.  Simulated PSD of the transmitted signal.

Fig. 16.  Simulated constellation of the demodulated signal.

Table 1.   Measurement result of the detection loop.

Table 2.   Measured parameters of different frequencies.

Table 3.   Comparison table.

[1]
Tai W, Xu H T. Ashokeack-off power efficiency enhancement. IEEE J Solid-State Circuits, 2012, 43(12):1646
[2]
Cui Jie, Chen Lei, Kang Chunlei, et al. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n. Journal of Semiconductors, 2013, 34(6):065001 doi: 10.1088/1674-4926/34/6/065001
[3]
Hur J, Kim H, Lee O, et al. Multi-level LINC transmitter with non-isolated power combiner. Electron Lett, 2013, 49(25):1624 doi: 10.1049/el.2013.3117
[4]
Cox D C. Linear amplification with nonlinear components. IEEE Trans Commun, 1974, COM-22(12):1942 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1092141
[5]
Chireix H. High power outphasing modulation. Proc IRE, 1935, 23(11):1370 doi: 10.1109/JRPROC.1935.227299
[6]
Shi B, Sundström L. A 200-MHz IF BiCMOS signal component separator for linear LINC transmitters. IEEE J Solid-State Circuits, 2000, 35(7):987 doi: 10.1109/4.848207
[7]
Shi B, Sundström L. An IF CMOS signal component separator chip for LINC transmitter. Proc IEEE Custom Integrated Circuits Conf, 2001, 5:49 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=929721
[8]
Panseri L, Romanó L, Levantino S, et al. Low-power signal component separator for a 64-QAM 802.11 LINC transmitter. IEEE J Solid-State Circuits, 2008, 43(5):1274 doi: 10.1109/JSSC.2008.920321
[9]
Ravi A, Madoglio P, Xu H T, et al. A 2.4 GHz 20-40-MHz channel WLAN digital outphasing transmitter utilizing a delay-based wideband phase modulator in 32-nm CMOS. IEEE J Solid-State Circuits, 2012, 47(12):3184 doi: 10.1109/JSSC.2012.2216671
[10]
Li Y, Li Z P, Uyar O, et al. High-throughput signal component separator for asymmetric multi-level outphasing power amplifiers. IEEE J Solid-State Circuits, 2013, 48(2):369 doi: 10.1109/JSSC.2012.2229071
[11]
Chen T W, Tsai P Y, Yu J Y, et al. A sub-mW all-digital signal component separator with branch mismatch compensation for OFDM LINC transmitter. IEEE J Solid-State Circuits, 2011, 46(11):2514 doi: 10.1109/JSSC.2011.2164133
[12]
Chung C C, Lee C Y. An all-digital phase-locked loop for high speed clock generation. IEEE J Solid-State Circuits, 2003, 38(2):347 doi: 10.1109/JSSC.2002.807398
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2191 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 21 April 2014 Revised: 28 May 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yue Han, Shushan Qiao, Yong Hei. An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution[J]. Journal of Semiconductors, 2014, 35(11): 115001. doi: 10.1088/1674-4926/35/11/115001 Y Han, S S Qiao, Y Hei. An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution[J]. J. Semicond., 2014, 35(11): 115001. doi: 10.1088/1674-4926/35/11/115001.Export: BibTex EndNote
      Citation:
      Yue Han, Shushan Qiao, Yong Hei. An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution[J]. Journal of Semiconductors, 2014, 35(11): 115001. doi: 10.1088/1674-4926/35/11/115001

      Y Han, S S Qiao, Y Hei. An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution[J]. J. Semicond., 2014, 35(11): 115001. doi: 10.1088/1674-4926/35/11/115001.
      Export: BibTex EndNote

      An all-digital synthesizable baseband for a delay-based LINC transmitter with reconfigurable resolution

      doi: 10.1088/1674-4926/35/11/115001
      More Information
      • Corresponding author: Han Yue, Email:hanyue@ime.ac.cn
      • Received Date: 2014-04-21
      • Revised Date: 2014-05-28
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return