SEMICONDUCTOR DEVICES

An improved single-π equivalent circuit model for on-chip inductors in GaAs process

Hansheng Wang1, Weiliang He1, Minghui Zhang1 and Lu Tang2,

+ Author Affiliations

 Corresponding author: Lu Tang, Email: lutang2k@seu.edu.cn

PDF

Abstract: An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.

Key words: on-chip inductorsGaAs processequivalent circuit modelsubstrate lateral coupling branchimproved characteristic function approachvector fitting



[1]
Alizadeh A, Medi A. A broadband integrated class-J power amplifier in GaAs pHEMT technology. IEEE Trans Microw Theory Tech, 2016, 64(6): 1822 doi: 10.1109/TMTT.2016.2552167
[2]
Xu Z, Mazumder P. Terahertz beam steering with doped GaAs phase modulator and a design of spatial-resolved high-speed terahertz analog-to-digital converter. IEEE Trans Electron Devices, 2014, 61(6): 2195 doi: 10.1109/TED.2014.2318278
[3]
Zhang Z, Guo Y, Li F, et al. A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications. IEEE Electron Device Lett, 2016, 37(12): 1639 doi: 10.1109/LED.2016.2619380
[4]
Long Y, Zhong Z, Guo Y X. A novel 4-D artificial-neural-network-based hybrid large-signal model of GaAs pHEMTs. IEEE Trans Microw Theory Tech, 2016, 64(6): 1752 doi: 10.1109/TMTT.2016.2555948
[5]
Schwitter B K, Fattorini A P, Parker A E, et al. Parameter extractions for a GaAs pHEMT thermal model using a TFR-heated test structure. IEEE Trans Electron Devices, 2015, 62(3): 795 doi: 10.1109/TED.2014.2388201
[6]
Khandelwal S, Fjeldly T A. Analysis of drain-current nonlinearity using surface-potential-based model in GaAs pHEMTs. IEEE Trans Microw Theory and Tech, 2013, 61(9): 3265 doi: 10.1109/TMTT.2013.2275943
[7]
Yu X, Huang W, Li M Y, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5(3): 43
[8]
Herget P, Wang N, O'Sullivan E J, et al. Limits to on-chip power conversion with thin film inductors. IEEE Trans Magn, 2013, 49(7): 4137 doi: 10.1109/TMAG.2013.2240442
[9]
Gao Z, Kang K, Jiang Z, et al. Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region. IEEE Trans Electron Devices, 2015, 62(12): 3957 doi: 10.1109/TED.2015.2488840
[10]
Mallik K, Abuelgasim A, Hashim N, et al. Analytical and numerical model of spiral inductors on high resistivity silicon substrates. Solid State Electron, 2014, 93(3): 43
[11]
Gil J, Shin H. A simple wide-band on-chip inductor model for silicon-based RF ICs. IEEE Trans Microw Theory Tech, 2003, 51(9): 2023 doi: 10.1109/TMTT.2003.815870
[12]
Yin W Y, Li L W, Pan S J, et al. Experimental characterization of on-chip inductor and capacitor interconnect: part II. shunt case. IEEE Trans Magn, 2004, 39(3): 1657
[13]
Huang F, Lu J, Zhu Y, et al. Effect of substrate parasitic inductance on silicon-based transmission lines and on-chip inductors. IEEE Electron Device Lett, 2007, 28(11): 1025 doi: 10.1109/LED.2007.906800
[14]
Huang F, Jiang N, Bian E. Characteristic-function approach to parameter extraction for asymmetric equivalent circuit of on-chip spiral inductors. IEEE Trans Microw Theory Tech, 2006, 54(1): 115 doi: 10.1109/TMTT.2005.860333
[15]
Pordanjani I R, Xu W. Improvement of vector fitting by using a new method for selection of starting poles. Electr Power Sys Res, 2014, 107: 206
Fig. 1.  (Color online) The test photo of 2.5r on-chip inductors in GaAs process.

Fig. 2.  (Color online) The test photo of 4.5r on-chip inductors in GaAs process.

Fig. 3.  The modified equivalent circuit model for the GaAs on-chip inductor.

Fig. 4.  (Color online) The linear fitting figure of f1(ω).

Fig. 5.  (Color online) The linear fitting figure of f2(ω).

Fig. 6.  The linear fitting figure of f3(ω).

Fig. 7.  The linear fitting figure of f4(ω).

Fig. 8.  The vector fitting figure of Zcoup(s).

Fig. 9.  The comparison between simulation and measured S-parameter (2.5r).

Fig. 10.  The comparison between simulation and measured S-parameter (4.5r).

Fig. 11.  The comparison between simulation and measured quality factor and equivalent inductance (2.5r).

Fig. 12.  The comparison between simulation and measured quality factor and equivalent inductance (4.5r).

Table 1.   The extracted results of model parameters.

Parameter Extracted results (2.5r) Extracted results (4.5r)
RS (Ω) 1.819 3.174
LS (nH) 0.6636 2.134
CS (fF) 0.7974 1.8973
Rp (Ω) 1.417 2.865
Lp (nH) 0.8128 1.845
Cp (fF) 56.59 63.485
Rg1 (Ω) 611.1 723.99
Cg1 (fF) 43.42 59.823
Cox1 (fF) 28.08 42.196
Rg2 (Ω) 503.0 673.15
Cg2 (fF) 80.00 103.74
Cox2 (fF) 41.96 82.476
Rsub1 (Ω) 366.7 496.32
Rsub2 (Ω) 251.5 397.93
Lsub (nH) 1.087 3.174
Csub (fF) 1.008 2.91
DownLoad: CSV
[1]
Alizadeh A, Medi A. A broadband integrated class-J power amplifier in GaAs pHEMT technology. IEEE Trans Microw Theory Tech, 2016, 64(6): 1822 doi: 10.1109/TMTT.2016.2552167
[2]
Xu Z, Mazumder P. Terahertz beam steering with doped GaAs phase modulator and a design of spatial-resolved high-speed terahertz analog-to-digital converter. IEEE Trans Electron Devices, 2014, 61(6): 2195 doi: 10.1109/TED.2014.2318278
[3]
Zhang Z, Guo Y, Li F, et al. A sandwich-type thermoelectric microwave power sensor for GaAs MMIC-compatible applications. IEEE Electron Device Lett, 2016, 37(12): 1639 doi: 10.1109/LED.2016.2619380
[4]
Long Y, Zhong Z, Guo Y X. A novel 4-D artificial-neural-network-based hybrid large-signal model of GaAs pHEMTs. IEEE Trans Microw Theory Tech, 2016, 64(6): 1752 doi: 10.1109/TMTT.2016.2555948
[5]
Schwitter B K, Fattorini A P, Parker A E, et al. Parameter extractions for a GaAs pHEMT thermal model using a TFR-heated test structure. IEEE Trans Electron Devices, 2015, 62(3): 795 doi: 10.1109/TED.2014.2388201
[6]
Khandelwal S, Fjeldly T A. Analysis of drain-current nonlinearity using surface-potential-based model in GaAs pHEMTs. IEEE Trans Microw Theory and Tech, 2013, 61(9): 3265 doi: 10.1109/TMTT.2013.2275943
[7]
Yu X, Huang W, Li M Y, et al. Ultra-small, high-frequency, and substrate-immune microtube inductors transformed from 2D to 3D. Sci Rep, 2015, 5(3): 43
[8]
Herget P, Wang N, O'Sullivan E J, et al. Limits to on-chip power conversion with thin film inductors. IEEE Trans Magn, 2013, 49(7): 4137 doi: 10.1109/TMAG.2013.2240442
[9]
Gao Z, Kang K, Jiang Z, et al. Analysis and equivalent-circuit model for CMOS on-chip multiple coupled inductors in the millimeter-wave region. IEEE Trans Electron Devices, 2015, 62(12): 3957 doi: 10.1109/TED.2015.2488840
[10]
Mallik K, Abuelgasim A, Hashim N, et al. Analytical and numerical model of spiral inductors on high resistivity silicon substrates. Solid State Electron, 2014, 93(3): 43
[11]
Gil J, Shin H. A simple wide-band on-chip inductor model for silicon-based RF ICs. IEEE Trans Microw Theory Tech, 2003, 51(9): 2023 doi: 10.1109/TMTT.2003.815870
[12]
Yin W Y, Li L W, Pan S J, et al. Experimental characterization of on-chip inductor and capacitor interconnect: part II. shunt case. IEEE Trans Magn, 2004, 39(3): 1657
[13]
Huang F, Lu J, Zhu Y, et al. Effect of substrate parasitic inductance on silicon-based transmission lines and on-chip inductors. IEEE Electron Device Lett, 2007, 28(11): 1025 doi: 10.1109/LED.2007.906800
[14]
Huang F, Jiang N, Bian E. Characteristic-function approach to parameter extraction for asymmetric equivalent circuit of on-chip spiral inductors. IEEE Trans Microw Theory Tech, 2006, 54(1): 115 doi: 10.1109/TMTT.2005.860333
[15]
Pordanjani I R, Xu W. Improvement of vector fitting by using a new method for selection of starting poles. Electr Power Sys Res, 2014, 107: 206
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3273 Times PDF downloads: 56 Times Cited by: 0 Times

    History

    Received: 31 May 2017 Revised: 30 July 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hansheng Wang, Weiliang He, Minghui Zhang, Lu Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. Journal of Semiconductors, 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010 H S Wang, W L He, M H Zhang, L Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. J. Semicond., 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010.Export: BibTex EndNote
      Citation:
      Hansheng Wang, Weiliang He, Minghui Zhang, Lu Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. Journal of Semiconductors, 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010

      H S Wang, W L He, M H Zhang, L Tang. An improved single-π equivalent circuit model for on-chip inductors in GaAs process[J]. J. Semicond., 2017, 38(11): 114010. doi: 10.1088/1674-4926/38/11/114010.
      Export: BibTex EndNote

      An improved single-π equivalent circuit model for on-chip inductors in GaAs process

      doi: 10.1088/1674-4926/38/11/114010
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61674036).

      More Information
      • Corresponding author: Email: lutang2k@seu.edu.cn
      • Received Date: 2017-05-31
      • Revised Date: 2017-07-30
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return