Special Issue on Flexible and Wearable Electronics: from Materials to Applications

The applications of carbon nanomaterials in fiber-shaped energy storage devices

Jingxia Wu, Yang Hong and Bingjie Wang

+ Author Affiliations

 Corresponding author: Bingjie Wang, Email: wangbingjie@fudan.edu.cn

PDF

Turn off MathJax

Abstract: As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices.

Key words: carbon nanotubegraphenefiber-shapedsupercapacitorlithium ion battery



[1]
Yu D S, Qian Q H, Wei L, et al. Emergence of fiber supercapacitors. Chem Soc Rev, 2015, 44: 647 doi: 10.1039/C4CS00286E
[2]
Zhang Z T, Zhang Y, Li Y, et al. The advancement of fiber-shaped energy harvesting and storage devices. Acta Polym Sin, 2016, 10: 1284
[3]
Zhang Y, Zhao Y, Ren J, et al. Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater, 2015, 28: 4524
[4]
Dalton A B, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature, 2003, 423(6941): 703 doi: 10.1038/423703a
[5]
Jiang K L, Li Q Q, Fan S S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801 doi: 10.1038/419801a
[6]
Li Q W, Li Y, Zhang X F, et al. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 2007, 19: 3358 doi: 10.1002/adma.200602966
[7]
Sun X M, Sun H, Li H P, et al. Developing polymer composite materials: carbon nanotubes or graphene. Adv Mater, 2013, 25: 5153 doi: 10.1002/adma.201301926
[8]
Ren J, Li L, Chen C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater, 2013, 25(8): 1155 doi: 10.1002/adma.201203445
[9]
Chen X L, Qiu L B, Ren J, et al. Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater, 2013, 25(44): 6436 doi: 10.1002/adma.v25.44
[10]
Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571 doi: 10.1038/ncomms1583
[11]
Xu Z, Sun H Y, Zhao X L, et al. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater, 2013, 25: 188 doi: 10.1002/adma.201203448
[12]
Dong Z L, Jiang C C, Cheng H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856 doi: 10.1002/adma.v24.14
[13]
Meng Y N, Zhao Y, Hu C G, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013, 25(16): 2326 doi: 10.1002/adma.201300132
[14]
Hu Y, Cheng H H, Zhao F, et al. All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6(12): 6448 doi: 10.1039/c4nr01220h
[15]
Hu X Z, Xu Z, Gao C. Multifunctional, supramolecular, continuous artificial nacre fibres. Sci Rep, 2012, 2: 767 doi: 10.1038/srep00767
[16]
Xu Z, Zhang Y, Li P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano, 2012, 8(55): 7103 doi: 10.1021/nn3021772
[17]
Gopalsamy K, Xu Z, Zheng B N, et al. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale, 2014, 6: 8595 doi: 10.1039/C4NR02615B
[18]
Sun H, You X, Deng J E, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater, 2014, 26(18): 2868 doi: 10.1002/adma.v26.18
[19]
Cheng H H, Dong Z L, Hu C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5(8): 3428 doi: 10.1039/c3nr00320e
[20]
Ma Y, Li P, Sedloff J W, et al. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. Acs Nano, 2015, 9(2): 1352 doi: 10.1021/nn505412v
[21]
Kou L, Huang T Q, Zheng B N, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014, 5(5): 3754 doi: 10.1038/ncomms4754
[22]
Ren J, Bai W Y, Guan G Z, et al. Flexible and weaveable capacitor wire based on a carbon nanocomposite Fiber. Adv Mater, 2013, 25(41): 5965 doi: 10.1002/adma.201302498
[23]
Su F H, Miao M H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology, 2014, 25(13): 135401 doi: 10.1088/0957-4484/25/13/135401
[24]
Choi C, Lee J A, Choi A Y, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater, 2014, 26(13): 2059 doi: 10.1002/adma.201304736
[25]
Chen Q, Meng Y N, Hu C G, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources, 2014, 247(3): 32
[26]
Lee J A, Shin M K, Kim S H, et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun, 2013, 4(3): 1970
[27]
Ding X T, Zhao Y, Hu C G, et al. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J Mater Chem A, 2014, 2(31): 12355 doi: 10.1039/C4TA01230E
[28]
Cai Z B, Li L, Ren J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J Mater Chem A, 2013, 1(2): 258 doi: 10.1039/C2TA00274D
[29]
Wang K, Meng Q H, Zhang Y J, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013, 25(10): 1494 doi: 10.1002/adma.v25.10
[30]
Wang B J, Wu Q Q, Sun H, et al. An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J Mater Chem A, 2017, 5: 925 doi: 10.1039/C6TA09360D
[31]
Zheng B N, Huang T Q, Kou L, et al. Graphene fiber-based asymmetric micro-supercapacitors. J Mater Chem A, 2014, 2(25): 9736 doi: 10.1039/C4TA01868K
[32]
Yu D S, Goh K L, Zhang Q, et al. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. Adv Mater, 2014, 26(39): 6790 doi: 10.1002/adma.v26.39
[33]
Xu P, Gu T L, Cao Z Y, et al. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater, 2014, 4(3): 618
[34]
Yang Z B, Deng J, Chen X L, et al. A Highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed, 2013, 52(50): 13453 doi: 10.1002/anie.201307619
[35]
Zhang Z T, Deng J, Li X Y, et al. Superelastic supercapacitors with high performances during stretching. Adv Mater, 2015, 27(2): 356 doi: 10.1002/adma.v27.2
[36]
Zhang Y, Bai W Y, Cheng X L, et al. Flexible and stretchable lithium ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 2014, 53(52): 14564 doi: 10.1002/anie.201409366
[37]
Sun H, You X, Jiang Y S, et al. Self-healable electrically conducting wires for wearable microelectronics. Angew Chem Int Ed, 2014, 53(36): 9526 doi: 10.1002/anie.201405145
[38]
Chen X L, Lin H J, Deng J, et al. Electrochromic fiber-shaped supercapacitors. Adv Mater, 2014, 26(48): 8126 doi: 10.1002/adma.201403243
[39]
Deng J, Zhang Y, Zhao Y, et al. A shape-memory supercapacitor fiber. Angew Chem Int Ed, 2015, 54(51): 15419 doi: 10.1002/anie.201508293
[40]
Sun H, Fu X M, Xie S L, et al. Electrochemical capacitors with high output voltages that mimic electric eels. Adv Mater, 2016, 28: 2070 doi: 10.1002/adma.201505742
[41]
Lin H J, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium ion battery. Adv Mater, 2014, 26(8): 1217 doi: 10.1002/adma.v26.8
[42]
Weng W, Sun Q, Zhang Y, et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett, 2014, 14(6): 3432 doi: 10.1021/nl5009647
[43]
Ren J, Zhang Y, Bai W Y, et al. Elastic and wearable wire-shaped lithium ion battery with high electrochemical performance. Angew Chem Int Ed, 2014, 53(30): 7864 doi: 10.1002/anie.201402388
[44]
Zhang Y, Bai W Y, Ren J, et al. Super-stretchy lithium ion battery based on carbon nanotube fiber. J Mater Chem A, 2014, 2(29): 11054 doi: 10.1039/c4ta01878h
[45]
Fang X, Weng W, Ren J, et al. A cable-shaped lithium sulfur battery. Adv Mater, 2016, 28: 491 doi: 10.1002/adma.v28.3
[46]
Park J, Park M, Nam G, et al. All-solid-state cable-type flexible zinc–air battery. Adv Mater, 2015, 27: 1396 doi: 10.1002/adma.201404639
[47]
Xu Y F, Zhao Y, Guo Z Y, et al. Flexible, stretchable, and rechargeable fiber-shaped zinc–air battery based on cross-stacked carbon nanotube sheets. Angew Chem Int Ed, 2015, 54: 15390 doi: 10.1002/anie.201508848
[48]
Xu Y F, Zhao Y, Ren J, et al. An all-solid-state fiber-shaped aluminum–air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem Int Ed, 2016, 55: 7979 doi: 10.1002/anie.201601804
[49]
Zhang Y, Wang L, Guo Z Y, et al. High-performance lithium–air battery with a coaxial-fiber architecture. Angew Chem Int Ed, 2016, 55: 4487 doi: 10.1002/anie.201511832
[50]
Sun H, Xie S L, Li Y M, et al. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater, 2016, 28: 8431 doi: 10.1002/adma.v28.38
[51]
Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol, 2014, 9(7): 555 doi: 10.1038/nnano.2014.93
[52]
Wang B J, Fang X, Sun H, et al. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv Mater, 2015, 27: 7854 doi: 10.1002/adma.201503441
[53]
Xu D, Ding X T, Liang Y, et al. Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8: 12113 doi: 10.1039/C6NR03116A
Fig. 2.  (Color online) (a) Proposed model for one pitch of GO CLCs. (b) Four-meter-long GO fiber wound on a Teflon drum (diameter, 2 cm). (c) SEM images of fracture morphology of the porous graphene fiber. (d) IV curves of GMF and GCF in a three-electrode system (vs. Ag/AgCl).

Fig. 1.  (Color online) (a) Schematic illustration to both the cross-sectional structure and mechanism for the high electrochemical properties of the coaxial FSC. (b) Schematic illustration of the FSC (down) fabricated from two twined GF@3D-G fibers (up) with polyelectrolyte. (c) Schematic illustration of the laser reduction of GO fiber for the preparation of RGO-GO-RGO fiber (up) and the all-in-one FSC (down). (d) Schematic illustration to the intercalated nanostructure of the graphene/MoS2 hybrid fiber electrode for FSC.

Fig. 3.  (Color online) (a) Schematic illustration to the fabrication of a highly stretchable FSC with a coaxial structure. (b) Schematic illustration to the self-healable FSC. (c) An electrochromic FSC with a different color in response to different potential. (d) A shape-memory FSC under a different state.

Fig. 4.  (Color online) (a) Schematic illustration to the FLIB fabricated by twisting an aligned CNT/MnO2 composite fiber and Li wire. (b) Schematic illustration to the preparation of the aligned CNT/Si composite fiber electrode used for FLIB. (c) Schematic illustration of the full FLIB prepared by CNT/LMO fiber and CNT/LTO fiber. (d) Schematic illustration of the fabrication of the super-stretchy FLIB.

Fig. 5.  (Color online) (a) Schematic illustration to fiber-shaped Li-S battery. (b) Schematic illustration to the cable-type Zn-air battery. (c) SEM images of the aligned CNT sheets with different angles. (d) Schematic illustration of the fabrication of the fiber-shaped Li-air battery.

Fig. 6.  (Color online) (a) Schematic illustration showing the coaxial spinning process of GO@CMC fiber. (b) Schematic illustration of the fabrication process of CNT/graphene hybrid fiber by hydrothermal method. (c) Schematic illustration of the experimental setup for the continuous fabrication of FSC.

[1]
Yu D S, Qian Q H, Wei L, et al. Emergence of fiber supercapacitors. Chem Soc Rev, 2015, 44: 647 doi: 10.1039/C4CS00286E
[2]
Zhang Z T, Zhang Y, Li Y, et al. The advancement of fiber-shaped energy harvesting and storage devices. Acta Polym Sin, 2016, 10: 1284
[3]
Zhang Y, Zhao Y, Ren J, et al. Advances in wearable fiber-shaped lithium-ion batteries. Adv Mater, 2015, 28: 4524
[4]
Dalton A B, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres-these extraordinary composite fibres can be woven into electronic textiles. Nature, 2003, 423(6941): 703 doi: 10.1038/423703a
[5]
Jiang K L, Li Q Q, Fan S S. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801 doi: 10.1038/419801a
[6]
Li Q W, Li Y, Zhang X F, et al. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater, 2007, 19: 3358 doi: 10.1002/adma.200602966
[7]
Sun X M, Sun H, Li H P, et al. Developing polymer composite materials: carbon nanotubes or graphene. Adv Mater, 2013, 25: 5153 doi: 10.1002/adma.201301926
[8]
Ren J, Li L, Chen C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv Mater, 2013, 25(8): 1155 doi: 10.1002/adma.201203445
[9]
Chen X L, Qiu L B, Ren J, et al. Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater, 2013, 25(44): 6436 doi: 10.1002/adma.v25.44
[10]
Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571 doi: 10.1038/ncomms1583
[11]
Xu Z, Sun H Y, Zhao X L, et al. Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater, 2013, 25: 188 doi: 10.1002/adma.201203448
[12]
Dong Z L, Jiang C C, Cheng H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856 doi: 10.1002/adma.v24.14
[13]
Meng Y N, Zhao Y, Hu C G, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater, 2013, 25(16): 2326 doi: 10.1002/adma.201300132
[14]
Hu Y, Cheng H H, Zhao F, et al. All-in-one graphene fiber supercapacitor. Nanoscale, 2014, 6(12): 6448 doi: 10.1039/c4nr01220h
[15]
Hu X Z, Xu Z, Gao C. Multifunctional, supramolecular, continuous artificial nacre fibres. Sci Rep, 2012, 2: 767 doi: 10.1038/srep00767
[16]
Xu Z, Zhang Y, Li P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano, 2012, 8(55): 7103 doi: 10.1021/nn3021772
[17]
Gopalsamy K, Xu Z, Zheng B N, et al. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale, 2014, 6: 8595 doi: 10.1039/C4NR02615B
[18]
Sun H, You X, Deng J E, et al. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices. Adv Mater, 2014, 26(18): 2868 doi: 10.1002/adma.v26.18
[19]
Cheng H H, Dong Z L, Hu C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5(8): 3428 doi: 10.1039/c3nr00320e
[20]
Ma Y, Li P, Sedloff J W, et al. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes. Acs Nano, 2015, 9(2): 1352 doi: 10.1021/nn505412v
[21]
Kou L, Huang T Q, Zheng B N, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014, 5(5): 3754 doi: 10.1038/ncomms4754
[22]
Ren J, Bai W Y, Guan G Z, et al. Flexible and weaveable capacitor wire based on a carbon nanocomposite Fiber. Adv Mater, 2013, 25(41): 5965 doi: 10.1002/adma.201302498
[23]
Su F H, Miao M H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics. Nanotechnology, 2014, 25(13): 135401 doi: 10.1088/0957-4484/25/13/135401
[24]
Choi C, Lee J A, Choi A Y, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores. Adv Mater, 2014, 26(13): 2059 doi: 10.1002/adma.201304736
[25]
Chen Q, Meng Y N, Hu C G, et al. MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J Power Sources, 2014, 247(3): 32
[26]
Lee J A, Shin M K, Kim S H, et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun, 2013, 4(3): 1970
[27]
Ding X T, Zhao Y, Hu C G, et al. Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors. J Mater Chem A, 2014, 2(31): 12355 doi: 10.1039/C4TA01230E
[28]
Cai Z B, Li L, Ren J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J Mater Chem A, 2013, 1(2): 258 doi: 10.1039/C2TA00274D
[29]
Wang K, Meng Q H, Zhang Y J, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013, 25(10): 1494 doi: 10.1002/adma.v25.10
[30]
Wang B J, Wu Q Q, Sun H, et al. An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. J Mater Chem A, 2017, 5: 925 doi: 10.1039/C6TA09360D
[31]
Zheng B N, Huang T Q, Kou L, et al. Graphene fiber-based asymmetric micro-supercapacitors. J Mater Chem A, 2014, 2(25): 9736 doi: 10.1039/C4TA01868K
[32]
Yu D S, Goh K L, Zhang Q, et al. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. Adv Mater, 2014, 26(39): 6790 doi: 10.1002/adma.v26.39
[33]
Xu P, Gu T L, Cao Z Y, et al. Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater, 2014, 4(3): 618
[34]
Yang Z B, Deng J, Chen X L, et al. A Highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed, 2013, 52(50): 13453 doi: 10.1002/anie.201307619
[35]
Zhang Z T, Deng J, Li X Y, et al. Superelastic supercapacitors with high performances during stretching. Adv Mater, 2015, 27(2): 356 doi: 10.1002/adma.v27.2
[36]
Zhang Y, Bai W Y, Cheng X L, et al. Flexible and stretchable lithium ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew Chem Int Ed, 2014, 53(52): 14564 doi: 10.1002/anie.201409366
[37]
Sun H, You X, Jiang Y S, et al. Self-healable electrically conducting wires for wearable microelectronics. Angew Chem Int Ed, 2014, 53(36): 9526 doi: 10.1002/anie.201405145
[38]
Chen X L, Lin H J, Deng J, et al. Electrochromic fiber-shaped supercapacitors. Adv Mater, 2014, 26(48): 8126 doi: 10.1002/adma.201403243
[39]
Deng J, Zhang Y, Zhao Y, et al. A shape-memory supercapacitor fiber. Angew Chem Int Ed, 2015, 54(51): 15419 doi: 10.1002/anie.201508293
[40]
Sun H, Fu X M, Xie S L, et al. Electrochemical capacitors with high output voltages that mimic electric eels. Adv Mater, 2016, 28: 2070 doi: 10.1002/adma.201505742
[41]
Lin H J, Weng W, Ren J, et al. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium ion battery. Adv Mater, 2014, 26(8): 1217 doi: 10.1002/adma.v26.8
[42]
Weng W, Sun Q, Zhang Y, et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett, 2014, 14(6): 3432 doi: 10.1021/nl5009647
[43]
Ren J, Zhang Y, Bai W Y, et al. Elastic and wearable wire-shaped lithium ion battery with high electrochemical performance. Angew Chem Int Ed, 2014, 53(30): 7864 doi: 10.1002/anie.201402388
[44]
Zhang Y, Bai W Y, Ren J, et al. Super-stretchy lithium ion battery based on carbon nanotube fiber. J Mater Chem A, 2014, 2(29): 11054 doi: 10.1039/c4ta01878h
[45]
Fang X, Weng W, Ren J, et al. A cable-shaped lithium sulfur battery. Adv Mater, 2016, 28: 491 doi: 10.1002/adma.v28.3
[46]
Park J, Park M, Nam G, et al. All-solid-state cable-type flexible zinc–air battery. Adv Mater, 2015, 27: 1396 doi: 10.1002/adma.201404639
[47]
Xu Y F, Zhao Y, Guo Z Y, et al. Flexible, stretchable, and rechargeable fiber-shaped zinc–air battery based on cross-stacked carbon nanotube sheets. Angew Chem Int Ed, 2015, 54: 15390 doi: 10.1002/anie.201508848
[48]
Xu Y F, Zhao Y, Ren J, et al. An all-solid-state fiber-shaped aluminum–air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem Int Ed, 2016, 55: 7979 doi: 10.1002/anie.201601804
[49]
Zhang Y, Wang L, Guo Z Y, et al. High-performance lithium–air battery with a coaxial-fiber architecture. Angew Chem Int Ed, 2016, 55: 4487 doi: 10.1002/anie.201511832
[50]
Sun H, Xie S L, Li Y M, et al. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater, 2016, 28: 8431 doi: 10.1002/adma.v28.38
[51]
Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol, 2014, 9(7): 555 doi: 10.1038/nnano.2014.93
[52]
Wang B J, Fang X, Sun H, et al. Fabricating continuous supercapacitor fibers with high performances by integrating all building materials and steps into one process. Adv Mater, 2015, 27: 7854 doi: 10.1002/adma.201503441
[53]
Xu D, Ding X T, Liang Y, et al. Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8: 12113 doi: 10.1039/C6NR03116A
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5800 Times PDF downloads: 80 Times Cited by: 0 Times

    History

    Received: 26 July 2017 Revised: 18 October 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices[J]. Journal of Semiconductors, 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004 J X Wu, Y Hong, B J Wang, The applications of carbon nanomaterials in fiber-shaped energy storage devices[J]. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004.Export: BibTex EndNote
      Citation:
      Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices[J]. Journal of Semiconductors, 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

      J X Wu, Y Hong, B J Wang, The applications of carbon nanomaterials in fiber-shaped energy storage devices[J]. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004.
      Export: BibTex EndNote

      The applications of carbon nanomaterials in fiber-shaped energy storage devices

      doi: 10.1088/1674-4926/39/1/011004
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

      More Information
      • Corresponding author: Email: wangbingjie@fudan.edu.cn
      • Received Date: 2017-07-26
      • Revised Date: 2017-10-18
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return