SEMICONDUCTOR TECHNOLOGY

Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics

Hongli Yan, Renxu Jia, Xiaoyan Tang, Qingwen Song and Yuming Zhang

+ Author Affiliations

 Corresponding author: Jia Renxu, Email:rxjia@mail.xidian.edu.cn

PDF

Abstract: The effect of the different re-oxidation annealing (ROA) processes on the SiO2/SiC interface characteristics has been investigated. With different annealing processes, the flat band voltage, effective dielectric charge density and interface trap density are obtained from the capacitance-voltage curves. It is found that the lowest interface trap density is obtained by the wet-oxidation annealing process at 1050℃ for 30 min, while a large number of effective dielectric charges are generated. The components at the SiO2/SiC interface are analyzed by X-ray photoelectron spectroscopy (XPS) testing. It is found that the effective dielectric charges are generated due to the existence of the C and H atoms in the wet-oxidation annealing process.

Key words: SiO2/SiCre-oxidation annealingeffective dielectric chargeinterface trap



[1]
Zhu Zhiqiao, Wang Dejun. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors. Journal of Semiconductors, 2014, 35(2):024002 doi: 10.1088/1674-4926/35/2/024002
[2]
Lin C, Anant A, Sarit D, et al. Static performance of 20 A, 1200 V 4H-SiC power MOSFETs at temperatures of -187 to 300. J Electron Mater, 2012, 41(5):910 doi: 10.1007/s11664-012-2000-2
[3]
Fiorenza P, Swanson L K, Vivona M, at al. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3. Appl Phys A, 2014, 115:333 doi: 10.1007/s00339-013-7824-y
[4]
Zhang C X, Zhang E X, Fleetwood D M, et al. Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs. IEEE Electron Device Lett, 2013, 34(1):117 doi: 10.1109/LED.2012.2228161
[5]
Yano H, Katafuchi F, Kimoto T. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET's. IEEE Trans Electron Devices, 1999, 46(3):504 doi: 10.1109/16.748869
[6]
Sharma Y K, Ahyi A C, Isaacs-Smith T. High-mobility stable 4H-SiC MOSFETs using a thin PSG interfacial passivation layer, IEEE Electron Device Lett, 2013, 34(2):175 doi: 10.1109/LED.2012.2232900
[7]
Liu G, Ahyi A C, Xu Y, et al. Enhanced inversion mobility on 4H-SiC (1120) using phosphorus and nitrogen interface passivation. IEEE Electron Device Lett, 2013, 34(2):181 doi: 10.1109/LED.2012.2233458
[8]
Lin L M, Lai P T. Improved high-field reliability for a SiC metal-oxide-semiconductor device by the incorporation of nitrogen into its HfTiO gate dielectric. J Appl Phys, 2007, 102(5):054515 doi: 10.1063/1.2776254
[9]
Jamet P, Dimitrijev S. Physical properties of N2O and NO-nitrided gate oxides grown on 4H-SiC. Appl Phys Lett, 2001, 79(3):323 doi: 10.1063/1.1385181
[10]
Kosugi R, Umeda T, Sakuma Y. Fixed nitrogen atoms in the SiO2/SiC interface region and their direct relationship to interface trap density. Appl Phys Lett, 2011, 99(18):182111 doi: 10.1063/1.3659689
[11]
Schroder D K. Semiconductor material and device characterization. 2nd ed. New York:Wiley, 1998
[12]
Schürmann M, Dreiner S, Berges U. Investigation of carbon contaminations in SiO2 films on 4H-SiC(0001). J Appl Phys, 2006, 100(11):113510 doi: 10.1063/1.2399307
[13]
Chang K C, Nuhfer N T, Porter L M. High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy. Appl Phys Lett, 2000, 77(14):2186 doi: 10.1063/1.1314293
[14]
Rudenko T E, Osiyuk I N, Tyagulski I P. Interface trap properties of thermally oxidized n-type 4H-SiC and 6H-SiC. Solid-State Electron, 2005, 49(4):545 doi: 10.1016/j.sse.2004.12.006
[15]
Da Silva C R S, Justo J F, Pereyra I. Crystalline silicon oxycarbide:is there a native oxide for silicon carbide. Appl Phys Lett, 2004, 84(24):4845 doi: 10.1063/1.1759373
[16]
Kamiya K, Ebihara Y, Chokawa K. Origins of negative fixed charge in wet oxidation for SiC. Materials Science Forum, 2013, 740:409 http://www.scientific.net/MSF.740-742.409
Fig. 1.  SiC MOS normalized $C$-$V$ curves with different annealing conditions.

Fig. 2.  Variation of $D_{\rm it}$ with (a) the time and (b) the temperature.

Fig. 3.  Variation of $Q_{\rm eff}$ with (a) the time and (b) the temperature.

Fig. 4.  XPS spectra of C1s peak for the SiO$_{2}$/SiC interface of (a) the #5 sample and (b) #7 sample.

Table 1.   Different annealing conditions of SiC samples.

Table 2.   Extracted values of the #1-#7 samples from $C$-$V$ curves.

Table 3.   Percentage of the composition of the C1s spectrum for the SiO$_{2}$/SiC interface of the #5 and #7 samples.

[1]
Zhu Zhiqiao, Wang Dejun. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors. Journal of Semiconductors, 2014, 35(2):024002 doi: 10.1088/1674-4926/35/2/024002
[2]
Lin C, Anant A, Sarit D, et al. Static performance of 20 A, 1200 V 4H-SiC power MOSFETs at temperatures of -187 to 300. J Electron Mater, 2012, 41(5):910 doi: 10.1007/s11664-012-2000-2
[3]
Fiorenza P, Swanson L K, Vivona M, at al. Comparative study of gate oxide in 4H-SiC lateral MOSFETs subjected to post-deposition-annealing in N2O and POCl3. Appl Phys A, 2014, 115:333 doi: 10.1007/s00339-013-7824-y
[4]
Zhang C X, Zhang E X, Fleetwood D M, et al. Origins of low-frequency noise and interface traps in 4H-SiC MOSFETs. IEEE Electron Device Lett, 2013, 34(1):117 doi: 10.1109/LED.2012.2228161
[5]
Yano H, Katafuchi F, Kimoto T. Effects of wet oxidation/anneal on interface properties of thermally oxidized SiO2/SiC MOS system and MOSFET's. IEEE Trans Electron Devices, 1999, 46(3):504 doi: 10.1109/16.748869
[6]
Sharma Y K, Ahyi A C, Isaacs-Smith T. High-mobility stable 4H-SiC MOSFETs using a thin PSG interfacial passivation layer, IEEE Electron Device Lett, 2013, 34(2):175 doi: 10.1109/LED.2012.2232900
[7]
Liu G, Ahyi A C, Xu Y, et al. Enhanced inversion mobility on 4H-SiC (1120) using phosphorus and nitrogen interface passivation. IEEE Electron Device Lett, 2013, 34(2):181 doi: 10.1109/LED.2012.2233458
[8]
Lin L M, Lai P T. Improved high-field reliability for a SiC metal-oxide-semiconductor device by the incorporation of nitrogen into its HfTiO gate dielectric. J Appl Phys, 2007, 102(5):054515 doi: 10.1063/1.2776254
[9]
Jamet P, Dimitrijev S. Physical properties of N2O and NO-nitrided gate oxides grown on 4H-SiC. Appl Phys Lett, 2001, 79(3):323 doi: 10.1063/1.1385181
[10]
Kosugi R, Umeda T, Sakuma Y. Fixed nitrogen atoms in the SiO2/SiC interface region and their direct relationship to interface trap density. Appl Phys Lett, 2011, 99(18):182111 doi: 10.1063/1.3659689
[11]
Schroder D K. Semiconductor material and device characterization. 2nd ed. New York:Wiley, 1998
[12]
Schürmann M, Dreiner S, Berges U. Investigation of carbon contaminations in SiO2 films on 4H-SiC(0001). J Appl Phys, 2006, 100(11):113510 doi: 10.1063/1.2399307
[13]
Chang K C, Nuhfer N T, Porter L M. High-carbon concentrations at the silicon dioxide-silicon carbide interface identified by electron energy loss spectroscopy. Appl Phys Lett, 2000, 77(14):2186 doi: 10.1063/1.1314293
[14]
Rudenko T E, Osiyuk I N, Tyagulski I P. Interface trap properties of thermally oxidized n-type 4H-SiC and 6H-SiC. Solid-State Electron, 2005, 49(4):545 doi: 10.1016/j.sse.2004.12.006
[15]
Da Silva C R S, Justo J F, Pereyra I. Crystalline silicon oxycarbide:is there a native oxide for silicon carbide. Appl Phys Lett, 2004, 84(24):4845 doi: 10.1063/1.1759373
[16]
Kamiya K, Ebihara Y, Chokawa K. Origins of negative fixed charge in wet oxidation for SiC. Materials Science Forum, 2013, 740:409 http://www.scientific.net/MSF.740-742.409
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2185 Times PDF downloads: 29 Times Cited by: 0 Times

    History

    Received: 09 March 2014 Revised: 06 April 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongli Yan, Renxu Jia, Xiaoyan Tang, Qingwen Song, Yuming Zhang. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics[J]. Journal of Semiconductors, 2014, 35(6): 066001. doi: 10.1088/1674-4926/35/6/066001 H L Yan, R X Jia, X Y Tang, Q W Song, Y M Zhang. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics[J]. J. Semicond., 2014, 35(6): 066001. doi: 10.1088/1674-4926/35/6/066001.Export: BibTex EndNote
      Citation:
      Hongli Yan, Renxu Jia, Xiaoyan Tang, Qingwen Song, Yuming Zhang. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics[J]. Journal of Semiconductors, 2014, 35(6): 066001. doi: 10.1088/1674-4926/35/6/066001

      H L Yan, R X Jia, X Y Tang, Q W Song, Y M Zhang. Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics[J]. J. Semicond., 2014, 35(6): 066001. doi: 10.1088/1674-4926/35/6/066001.
      Export: BibTex EndNote

      Effect of re-oxidation annealing process on the SiO2/SiC interface characteristics

      doi: 10.1088/1674-4926/35/6/066001
      Funds:

      the National Natural Science Foundation of China 61234006

      Project supported by the National Natural Science Foundation of China (Nos. 51272202, 61234006, 61274079)

      the National Natural Science Foundation of China 61274079

      the National Natural Science Foundation of China 51272202

      More Information
      • Corresponding author: Jia Renxu, Email:rxjia@mail.xidian.edu.cn
      • Received Date: 2014-03-09
      • Revised Date: 2014-04-06
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return