SEMICONDUCTOR INTEGRATED CIRCUITS

A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture

Jin Wu1, 2, , Jianwu Chen1, 2, Danyu Wu1, 2, Lei Zhou1, 2, Fan Jiang1, 2, Zhi Jin1, 2 and Xinyu Liu1, 2,

+ Author Affiliations

 Corresponding author: Wu Jin, wujin@ime.ac.cn; Liu Xinyu, xyliu@ime.ac.cn

PDF

Abstract: This paper presents a novel direct digital frequency synthesizer (DDFS) architecture based on nonlinear DAC coarse quantization and the ROM-based piecewise approximation method, which has the advantages of high speed, low power and low hardware resources. By subdividing the sinusoid into a collection of phase segments, the same initial value of each segment is realized by a nonlinear DAC. The ROM is decomposed with a coarse ROM and fine ROM using the piecewise approximation method. Then, the coarse ROM stores the offsets between the initial value of the common segment and the initial value of each line in the same segment. Meanwhile, the fine ROM stores the differences between the line values and the initial value of each line. A ROM compression ratio of 32 can be achieved in the case of 11 bit phase and 9 bit amplitude. Based on the above method, a prototype chip was fabricated using 1.4 μm GaAs HBT technology. The measurement shows an average spurious-free dynamic range (SFDR) of 45 dBc, with the worst SFDR only 40.07 dBc at a 4.0 GHz clock. The chip area is 4.6×3.7 mm2 and it consumes 7 W from a -4.9 V power supply.

Key words: direct digital frequency synthesisread-only memorydigital-to-analog convertergallium arsenideheterojunction bipolar transistor



[1]
Yang B D, Choi J H, Han S H, et al. An 800-MHz low-power direct digital frequency synthesizer with an on-chip D/A converter. IEEE J Solid-State Circuits, 2004, 39(5):761 doi: 10.1109/JSSC.2004.826323
[2]
Turner S E, Chan R T, Feng J T. ROM-based direct digital synthesizer at 24 GHz clock frequency in InP DHBT technology. IEEE Microw Wireless Compon Lett, 2008, 18(8):566 doi: 10.1109/LMWC.2008.2001025
[3]
Turner S E, Kotecki D E. Direct digital synthesizer with sinusoidal-weighted DAC at 32-GHz clock frequency in InP DHBT technology. IEEE J Solid-State Circuits, 2006, 41(10):2284 doi: 10.1109/JSSC.2006.881552
[4]
Geng X, Dai F F, Irwin J D, et al. An 11-bit 8.6 GHz direct digital synthesizer MMIC with 10-bit segmented sinusoidal-weighted DAC. IEEE J Solid-State Circuits, 2010, 45(2):300 doi: 10.1109/JSSC.2009.2037542
[5]
Baek K H, Merlo E, Choe M J, et al. A 1.7 GHz 3 V direct digital frequency synthesizer with an on-chip DAC in 0.35μm SiGe BiCMOS. IEEE ISSCC Dig of Tech Papers, San Francisco, CA, 2005:114
[6]
Urteaga M, Pierson R, Rowell P, et al. Advanced InP DHBT process for high speed LSI circuits. IEEE ICIPRM, Versailles, France, 2008:1 http://ieeexplore.ieee.org/document/4703058/?reload=true&arnumber=4703058
[7]
Thuries S, Tournier E, Cathelin A, et al. A 6-GHz low-power BiCMOS SiGe:C 0.25μm direct digital synthesizer. IEEE Microw Wireless Compon Lett, 2008, 18(1):46 doi: 10.1109/LMWC.2007.911994
[8]
Laemmle B, Wagner C, Knapp H, et al. A differential pair-based direct digital synthesizer MMIC with 16.8-GHz clock and 488-mW power consumption. IEEE Trans Microw Theory and Tech, 2010, 58(5):1375 doi: 10.1109/TMTT.2010.2042860
[9]
Strollo A G M, De Caro D, Petra N. A 630 MHz, 76 mW direct digital frequency synthesizer using enhanced ROM compression technique. IEEE J Solid-State Circuits, 2007, 42(2):350 doi: 10.1109/JSSC.2006.889382
[10]
De Caro D, Petra N, Strollo A G M. Reducing look-up tablesize in direct digital frequency synthesizers using optimized multipartite table method. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2008, 55(7):2116 doi: 10.1109/TCSI.2008.918008
[11]
Kang C Y, Swartzlander Jr E E. Digit-pipelined direct digital frequency synthesis based on differential CORDIC. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2006, 53(5):1035 doi: 10.1109/TCSI.2005.862183
[12]
Madisetti A, Kwentus A Y, Willson A N Jr. A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spuriousfree dynamic range. IEEE J Solid-State Circuits, 1999, 34(8):1034 doi: 10.1109/4.777100
[13]
De Caro D, Napoli E, Strollo A G M. Direct digital frequency synthesizers with polynomial hyperfolding technique. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2004, 51(7):337 doi: 10.1109/TCSII.2004.829553
[14]
Curticapean F, Niittylahti J. Direct digital frequency synthesizers of high spectral purity based on quadratic approximation. Proc IEEE Int Conf Electron Circuits Syst, Dubrovnik, 2002, 3:1095 doi: 10.1109/ICECS.2002.1046442
[15]
Ashrafi A, Adhami R, Milenkovic A. A direct digital frequency synthesizer based on the quasi-linear interpolation method. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2010, 57(4):863 doi: 10.1109/TCSI.2009.2027645
[16]
Langlois J M P, Al-Khalili D. Low power direct digital frequency synthesizers in 0.18-μm CMOS. Proc Custom Integr Circuits Conf, San Jose, CA, 2003:283
[17]
Yeoh H C, Jung J H, Jung Y H, et al. A 1.3-GHz 350-mW hybrid direct digital frequency synthesizer in 90-nm CMOS. IEEE J Solid-State Circuits, 2010, 45(9):1845 doi: 10.1109/JSSC.2010.2056830
[18]
Nicholas H T, Samueli H. A 150-MHz direct digital frequency synthesizer in 1.25-μm CMOS with -90-dBc spurious performance. IEEE J Solid-State Circuits, 1991, 26(12):1959 doi: 10.1109/4.104190
[19]
Chen J W, Wu D Y, Zhou L, et al. 5.3-GHz 32-bit accumulator designed for direct digital frequency sythesizer. Chinese Science Bulletin, 2012, 57(19):2480 doi: 10.1007/s11434-012-5157-4
[20]
Bellaouar A, O'Brecht M S, Fahim A M, et al. Low-power direct digital frequency synthesis for wireless communications. IEEE J Solid-State Circuits, 2000, 35(3):385 doi: 10.1109/4.826821
Fig. 1.  Conceptual diagrams of different DDFS architectures.

Fig. 2.  Quarter sin wave approximation using nonlinear DAC coarse quantization and ROM-based piecewise approximation.

Fig. 3.  Diagram of the proposed DDFS.

Fig. 4.  The proposed 32 bit eight-stage pipeline accumulator.

Fig. 5.  The generation of the clock pulses for the proposed pre-skewing scheme.

Fig. 6.  Block diagram of the hybrid DAC.

Fig. 7.  Prototype DDFS IC micrograph.

Fig. 8.  The measured spectrum of 632 MHz output frequency with an SFDR of 52.07 dBc under a 4 GHz clock.

Fig. 9.  The measured spectrum of 1.933 GHz output frequency with an SFDR of 40.29 dBc under a 4 GHz clock.

Fig. 10.  The measured SFDR versus output frequency under a 4 GHz clock.

Fig. 11.  Power distribution chart.

Table 1.   ROM compressions in the case of 11 bit phase and 9 bit amplitude.

Table 2.   Comparison with recently reported compound semiconductor DDFS designs.

[1]
Yang B D, Choi J H, Han S H, et al. An 800-MHz low-power direct digital frequency synthesizer with an on-chip D/A converter. IEEE J Solid-State Circuits, 2004, 39(5):761 doi: 10.1109/JSSC.2004.826323
[2]
Turner S E, Chan R T, Feng J T. ROM-based direct digital synthesizer at 24 GHz clock frequency in InP DHBT technology. IEEE Microw Wireless Compon Lett, 2008, 18(8):566 doi: 10.1109/LMWC.2008.2001025
[3]
Turner S E, Kotecki D E. Direct digital synthesizer with sinusoidal-weighted DAC at 32-GHz clock frequency in InP DHBT technology. IEEE J Solid-State Circuits, 2006, 41(10):2284 doi: 10.1109/JSSC.2006.881552
[4]
Geng X, Dai F F, Irwin J D, et al. An 11-bit 8.6 GHz direct digital synthesizer MMIC with 10-bit segmented sinusoidal-weighted DAC. IEEE J Solid-State Circuits, 2010, 45(2):300 doi: 10.1109/JSSC.2009.2037542
[5]
Baek K H, Merlo E, Choe M J, et al. A 1.7 GHz 3 V direct digital frequency synthesizer with an on-chip DAC in 0.35μm SiGe BiCMOS. IEEE ISSCC Dig of Tech Papers, San Francisco, CA, 2005:114
[6]
Urteaga M, Pierson R, Rowell P, et al. Advanced InP DHBT process for high speed LSI circuits. IEEE ICIPRM, Versailles, France, 2008:1 http://ieeexplore.ieee.org/document/4703058/?reload=true&arnumber=4703058
[7]
Thuries S, Tournier E, Cathelin A, et al. A 6-GHz low-power BiCMOS SiGe:C 0.25μm direct digital synthesizer. IEEE Microw Wireless Compon Lett, 2008, 18(1):46 doi: 10.1109/LMWC.2007.911994
[8]
Laemmle B, Wagner C, Knapp H, et al. A differential pair-based direct digital synthesizer MMIC with 16.8-GHz clock and 488-mW power consumption. IEEE Trans Microw Theory and Tech, 2010, 58(5):1375 doi: 10.1109/TMTT.2010.2042860
[9]
Strollo A G M, De Caro D, Petra N. A 630 MHz, 76 mW direct digital frequency synthesizer using enhanced ROM compression technique. IEEE J Solid-State Circuits, 2007, 42(2):350 doi: 10.1109/JSSC.2006.889382
[10]
De Caro D, Petra N, Strollo A G M. Reducing look-up tablesize in direct digital frequency synthesizers using optimized multipartite table method. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2008, 55(7):2116 doi: 10.1109/TCSI.2008.918008
[11]
Kang C Y, Swartzlander Jr E E. Digit-pipelined direct digital frequency synthesis based on differential CORDIC. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2006, 53(5):1035 doi: 10.1109/TCSI.2005.862183
[12]
Madisetti A, Kwentus A Y, Willson A N Jr. A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spuriousfree dynamic range. IEEE J Solid-State Circuits, 1999, 34(8):1034 doi: 10.1109/4.777100
[13]
De Caro D, Napoli E, Strollo A G M. Direct digital frequency synthesizers with polynomial hyperfolding technique. IEEE Trans Circuits Syst Ⅱ, Exp Briefs, 2004, 51(7):337 doi: 10.1109/TCSII.2004.829553
[14]
Curticapean F, Niittylahti J. Direct digital frequency synthesizers of high spectral purity based on quadratic approximation. Proc IEEE Int Conf Electron Circuits Syst, Dubrovnik, 2002, 3:1095 doi: 10.1109/ICECS.2002.1046442
[15]
Ashrafi A, Adhami R, Milenkovic A. A direct digital frequency synthesizer based on the quasi-linear interpolation method. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2010, 57(4):863 doi: 10.1109/TCSI.2009.2027645
[16]
Langlois J M P, Al-Khalili D. Low power direct digital frequency synthesizers in 0.18-μm CMOS. Proc Custom Integr Circuits Conf, San Jose, CA, 2003:283
[17]
Yeoh H C, Jung J H, Jung Y H, et al. A 1.3-GHz 350-mW hybrid direct digital frequency synthesizer in 90-nm CMOS. IEEE J Solid-State Circuits, 2010, 45(9):1845 doi: 10.1109/JSSC.2010.2056830
[18]
Nicholas H T, Samueli H. A 150-MHz direct digital frequency synthesizer in 1.25-μm CMOS with -90-dBc spurious performance. IEEE J Solid-State Circuits, 1991, 26(12):1959 doi: 10.1109/4.104190
[19]
Chen J W, Wu D Y, Zhou L, et al. 5.3-GHz 32-bit accumulator designed for direct digital frequency sythesizer. Chinese Science Bulletin, 2012, 57(19):2480 doi: 10.1007/s11434-012-5157-4
[20]
Bellaouar A, O'Brecht M S, Fahim A M, et al. Low-power direct digital frequency synthesis for wireless communications. IEEE J Solid-State Circuits, 2000, 35(3):385 doi: 10.1109/4.826821
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1966 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 26 March 2013 Revised: 17 May 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jin Wu, Jianwu Chen, Danyu Wu, Lei Zhou, Fan Jiang, Zhi Jin, Xinyu Liu. A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture[J]. Journal of Semiconductors, 2013, 34(11): 115007. doi: 10.1088/1674-4926/34/11/115007 J Wu, J W Chen, D Y Wu, L Zhou, F Jiang, Z Jin, X Y Liu. A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture[J]. J. Semicond., 2013, 34(11): 115007. doi: 10.1088/1674-4926/34/11/115007.Export: BibTex EndNote
      Citation:
      Jin Wu, Jianwu Chen, Danyu Wu, Lei Zhou, Fan Jiang, Zhi Jin, Xinyu Liu. A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture[J]. Journal of Semiconductors, 2013, 34(11): 115007. doi: 10.1088/1674-4926/34/11/115007

      J Wu, J W Chen, D Y Wu, L Zhou, F Jiang, Z Jin, X Y Liu. A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture[J]. J. Semicond., 2013, 34(11): 115007. doi: 10.1088/1674-4926/34/11/115007.
      Export: BibTex EndNote

      A 4 GHz 32 bit direct digital frequency synthesizer based on a novel architecture

      doi: 10.1088/1674-4926/34/11/115007
      Funds:

      the National Basic Research Program of China 2010CB327505

      Project supported by the National Basic Research Program of China (No. 2010CB327505)

      More Information
      • Corresponding author: Wu Jin, wujin@ime.ac.cn; Liu Xinyu, xyliu@ime.ac.cn
      • Received Date: 2013-03-26
      • Revised Date: 2013-05-17
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return