SEMICONDUCTOR PHYSICS

First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

Zhipeng Yuan, Hongbao Cui and Xuefeng Guo

+ Author Affiliations

 Corresponding author: Hongbao Cui,Email:cuihongbao@hpu.edu.cn

PDF

Abstract: Using the first-principles plane-wave pseudo-potential method based on density functional theory, the effect of vacancy and anti-position defect on the mechanical and thermal properties of B2-NiSc intermetallics were discussed in detail. Several parameters, such as the shear modulus, bulk modulus, modulus of elasticity, C11-C12, the Debye temperature and Poisson's ratio, have been calculated to evaluate the effect of vacancy and anti-position defect on the hardness, ductility and thermal properties of B2-NiSc intermetallics. The results show that VNi, ScNi, VSc and NiSc the four point defects all make the crystal hardness decrease and improve plasticity of B2-NiSc intermetallics. The entropy, enthalpy and free energy of VNi, ScNi, VSc and NiSc are monotonously changed as temperature changes. From the perspective of free energy, NiSc is the most stable, while ScNi is the most unstable. Debye temperature of NiSc intermetallics with four different point defects shows VNi, ScNi, VSc and NiSc the four point defects all reduce the stability of B2-NiSc intermetallics.

Key words: B2-NiSc intermetallicsvacancyanti-position defectplasticityDebye temperature



[1]
Karl G, Alan R, Alexandra P, et al. A family of ductile intermetallic compounds. Nat Mater, 2003, 2(9): 587 doi: 10.1038/nmat958
[2]
Chen L, Peng P, Zhan J, et al. First-principles calculation on mechanical properties of B2-NiAl intermetallic compound with Fe addition. Rare Metal Mater Eng, 2010, 39(2): 229 http://en.cnki.com.cn/Article_en/CJFDTOTAL-COSE201002010.htm
[3]
Xie Z Y, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics. J Mater Res, 1994, 9(4): 875 doi: 10.1557/JMR.1994.0875
[4]
Fu C L, Ye Y, Yoo M H, et al. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl. Phys Rev B, 1993, 48(9): 6712 doi: 10.1103/PhysRevB.48.6712
[5]
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64(4): 1045 doi: 10.1103/RevModPhys.64.1045
[6]
Sun G P, Yan J L, Niu P J, et al. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J Semicond, 2016, 37(2): 023005 doi: 10.1088/1674-4926/37/2/023005
[7]
Ma X G, Yan J, Liu N, et al. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface. J Semicond, 2016, 37(3): 033001 doi: 10.1088/1674-4926/37/3/033001
[8]
Liu Z Y, Lin D L, Huang B Y. Calculation on concentration of point defects in NiAl Intermetallics. J Shanghai Jiaotong Univ 1999, 33: 146
[9]
Thomas R M, Ann E M. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66(21): 214110 doi: 10.1103/PhysRevB.66.214110
[10]
Pan Y, Lin Y, Wang H, et al. Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater Des, 2015, 86: 259 http://www.docin.com/p-1322707578.html
[11]
Chen K Y, Zhao L R, John R, et al. Alloying effects on elastic properties of TiN-based nitride. J Phys D, 2003, 36(21): 2725 doi: 10.1088/0022-3727/36/21/021
[12]
Liu Q, Zhang R. Effect of 6.25 at% Al addition on structural stability of magnesium under high pressure: a first-principles study. J Alloys Compd, 2010, 508(2): 616 doi: 10.1016/j.jallcom.2010.08.142
[13]
Pugh S F. XCII. Relations between the modulus of elasticity and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Mag J Sci, 2009, 45(367): 823 http://cn.bing.com/academic/profile?id=bbeea9069ccd86c3d749aa50e43fc021&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Schiltz R J, Smith J F. Elastic constants of some MAl2 single crystals. J Appl Phys, 1974, 45(11): 4681 doi: 10.1063/1.1663118
[15]
Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys Rev B, 2003, 68(18): 184108 doi: 10.1103/PhysRevB.68.184108
[16]
Anderson O L. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids, 1963, 24(7): 909 doi: 10.1016/0022-3697(63)90067-2
[17]
Aydin S, Simsek M. First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-type structure. Phys Rev B, 2009, 80(13): 134107 doi: 10.1103/PhysRevB.80.134107
[18]
Hong S, Fu C L. Phase stability and elastic modulus of Cr2Nb by first-principles calculations. Intermetallics, 1999, 7(1): 5 doi: 10.1016/S0966-9795(98)00005-3
Fig. 1.  (Color online) Crystal structure of B2-NiSc (blue balls and white ball represent Ni atoms and Sc atom, respectively).

Fig. 2.  (Color online) Supercell model of B2-NiSc with point defects. (a) Supercell with a VNi. (b) Supercell with a ScNi. (c) Supercell with a VSc. (d) Supercell with a Ni$_{\rm Sc}.$

Fig. 3.  DOS of B2-NiSc with four point defects.

Fig. 4.  (Color online) The enthalpy E(T), entropy S(T), free energy F(T) of VNi, ScNi, VSc and NiSc.

Table 1.   The lattice constant of B2-NiSc without point defect and with four point defects.

Point defect This work (Å) Reference value (Å)
No point defect 3.171 3.171
VNi 3.164 -
ScNi 3.228 -
VSc 3.132 -
NiSc 3.123 -
DownLoad: CSV

Table 2.   The elastic constant of B2-NiSc without point defect and with four point defects.

Elastic constant No point defect VNi ScNi VSc NiSc
$C_{11}$ 187.76 123.30 144.80 108.79 130.79
$C_{12}$ 70.03 78.68 74.16 70.02 108.15
$C_{44}$ 51.40 36.07 45.02 42.83 53.20
DownLoad: CSV

Table 3.   The shear modulus, bulk modulus and modulus of elasticity of B2-NiSc without point defect and with four point defects, respectively.

Parameter No point defect VNi ScNi VSc NiSc
G (GPa) 54.27 29.7540.85 31.1628.95
B (GPa) 109.28 93.5697.71 82.94115.69
E (GPa) 139.69 80.70107.5683.0880.16
DownLoad: CSV

Table 4.   The $C_{11}-C_{12}$, G/B ratio and Poisson's ratio of B2-NiSc without point defect and with four point defects.

Parameter No point defect VNi ScNi VSc NiSc
$C_{11}-C_{12}$ (GPa) 80.6244.6243.90 38.7722.64
$G/B $ 0.500.32 0.34 0.38 0.25
$nu $ 0.290.36 0.35 0.33 0.39
DownLoad: CSV
[1]
Karl G, Alan R, Alexandra P, et al. A family of ductile intermetallic compounds. Nat Mater, 2003, 2(9): 587 doi: 10.1038/nmat958
[2]
Chen L, Peng P, Zhan J, et al. First-principles calculation on mechanical properties of B2-NiAl intermetallic compound with Fe addition. Rare Metal Mater Eng, 2010, 39(2): 229 http://en.cnki.com.cn/Article_en/CJFDTOTAL-COSE201002010.htm
[3]
Xie Z Y, Farkas D. Atomistic structure and lattice effects of vacancies in Ni-Al intermetallics. J Mater Res, 1994, 9(4): 875 doi: 10.1557/JMR.1994.0875
[4]
Fu C L, Ye Y, Yoo M H, et al. Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl. Phys Rev B, 1993, 48(9): 6712 doi: 10.1103/PhysRevB.48.6712
[5]
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys, 1992, 64(4): 1045 doi: 10.1103/RevModPhys.64.1045
[6]
Sun G P, Yan J L, Niu P J, et al. Electronic structure and optical property of p-type Zn-doped SnO2 with Sn vacancy. J Semicond, 2016, 37(2): 023005 doi: 10.1088/1674-4926/37/2/023005
[7]
Ma X G, Yan J, Liu N, et al. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface. J Semicond, 2016, 37(3): 033001 doi: 10.1088/1674-4926/37/3/033001
[8]
Liu Z Y, Lin D L, Huang B Y. Calculation on concentration of point defects in NiAl Intermetallics. J Shanghai Jiaotong Univ 1999, 33: 146
[9]
Thomas R M, Ann E M. Calculating the vacancy formation energy in metals: Pt, Pd, and Mo. Phys Rev B, 2002, 66(21): 214110 doi: 10.1103/PhysRevB.66.214110
[10]
Pan Y, Lin Y, Wang H, et al. Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater Des, 2015, 86: 259 http://www.docin.com/p-1322707578.html
[11]
Chen K Y, Zhao L R, John R, et al. Alloying effects on elastic properties of TiN-based nitride. J Phys D, 2003, 36(21): 2725 doi: 10.1088/0022-3727/36/21/021
[12]
Liu Q, Zhang R. Effect of 6.25 at% Al addition on structural stability of magnesium under high pressure: a first-principles study. J Alloys Compd, 2010, 508(2): 616 doi: 10.1016/j.jallcom.2010.08.142
[13]
Pugh S F. XCII. Relations between the modulus of elasticity and the plastic properties of polycrystalline pure metals. London Edinburgh Dublin Philos Mag J Sci, 2009, 45(367): 823 http://cn.bing.com/academic/profile?id=bbeea9069ccd86c3d749aa50e43fc021&encoded=0&v=paper_preview&mkt=zh-cn
[14]
Schiltz R J, Smith J F. Elastic constants of some MAl2 single crystals. J Appl Phys, 1974, 45(11): 4681 doi: 10.1063/1.1663118
[15]
Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4: a class of hard materials. Phys Rev B, 2003, 68(18): 184108 doi: 10.1103/PhysRevB.68.184108
[16]
Anderson O L. A simplified method for calculating the Debye temperature from elastic constants. J Phys Chem Solids, 1963, 24(7): 909 doi: 10.1016/0022-3697(63)90067-2
[17]
Aydin S, Simsek M. First-principles calculations of MnB2, TcB2, and ReB2 within the ReB2-type structure. Phys Rev B, 2009, 80(13): 134107 doi: 10.1103/PhysRevB.80.134107
[18]
Hong S, Fu C L. Phase stability and elastic modulus of Cr2Nb by first-principles calculations. Intermetallics, 1999, 7(1): 5 doi: 10.1016/S0966-9795(98)00005-3
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3209 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 09 May 2016 Revised: 30 June 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhipeng Yuan, Hongbao Cui, Xuefeng Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects[J]. Journal of Semiconductors, 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001 Z P Yuan, H B Cui, X F Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects[J]. J. Semicond., 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001.Export: BibTex EndNote
      Citation:
      Zhipeng Yuan, Hongbao Cui, Xuefeng Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects[J]. Journal of Semiconductors, 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001

      Z P Yuan, H B Cui, X F Guo. First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects[J]. J. Semicond., 2017, 38(1): 012001. doi: 10.1088/1674-4926/38/1/012001.
      Export: BibTex EndNote

      First-principle calculation on mechanical and thermal properties of B2-NiSc with point defects

      doi: 10.1088/1674-4926/38/1/012001
      Funds:

      Project supported by the National Natural Science Foundation of China Nos. 51301063, 51571086

      and the Talent Introduction Foundation of Henan Polytechnic University No. Y-2009

      Project supported by the National Natural Science Foundation of China (Nos. 51301063, 51571086) and the Talent Introduction Foundation of Henan Polytechnic University (No. Y-2009).

      More Information
      • Corresponding author: Hongbao Cui,Email:cuihongbao@hpu.edu.cn
      • Received Date: 2016-05-09
      • Revised Date: 2016-06-30
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return