SEMICONDUCTOR INTEGRATED CIRCUITS

A novel broadband power amplifier in SiGe HBT technology

Wenyuan Li and Qian Zhang

+ Author Affiliations

 Corresponding author: Li Wenyuan, lwy555@seu.edu.cn

PDF

Abstract: A novel broadband power amplifier fabricated in 0.13 μm SiGe HBT technology is realized. The pseudo-differential structure is proposed to avoid the influence of the bonding wire due to the AC virtual ground created at the common emitter node. A compensated matching technique is adopted in interstage matching to expand bandwidth. A multi-stage broadband matching technique is used in an input/output matching network to offer broadband impedance matching, which ensures maximum power transfer. An adaptive bias circuit could improve linearity and efficiency in wide output power level. With 2.5 V power supply, the measured results achieve 96% 3-dB bandwidth (517-1470 MHz), 27.2 dB power gain, 26.9 dBm maximum output power, 19.7 dBm output 1 dB compression point, and 26.7% power added efficiency.

Key words: broadband power amplifiersilicon germaniumheterojunction bipolar transistorcompensated matchingmulti-stage broadband matchingadaptive bias



[1]
Aniktar H, Sjoland H, Mikkelsen J H, et al. A class-AB 1.65 GHz-2 GHz broadband CMOS medium power amplifier. NORCHIP Conference, 2005:269 http://ieeexplore.ieee.org/document/1597041/
[2]
Chen Y J E, Yang L Y, Yeh W C. An integrated wideband power amplifier for cognitive radio. IEEE Trans Microw Theory Tech, 2007, 55(10):2053 doi: 10.1109/TMTT.2007.906497
[3]
Nellis K, Zampardi P J. A comparison of linear handset power amplifiers in different bipolar technologies. IEEE J Solid-State Circuits, 2004, 39(10):1746 doi: 10.1109/JSSC.2004.833761
[4]
Johnson J B, Joseph A J, Sheridan D C, et al. Silicon-germanium BiCMOS HBT technology for wireless power amplifier applications. IEEE J Solid-State Circuits, 2004, 39:1605 doi: 10.1109/JSSC.2004.833570
[5]
Alimenti F, Mezzanotte P, Roselli L, et al. Modeling and characterization of the bonding-wire interconnection. Microw Theory Tech, 2001, 49(1):142 doi: 10.1109/22.899975
[6]
Bahmani F, Sanchez-Sinencio E. A highly linear pseudo-differential transconductance[CMOS OTA]. ESSCIRC, 2004:111 http://ieeexplore.ieee.org/document/1356630/?reload=true&arnumber=1356630
[7]
Ismail A, Abidi A A. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits, 2004, 39(12):2269 doi: 10.1109/JSSC.2004.836344
[8]
Taris T, Elgharniti O, Begueret J B, et al. UWB LNAs using LC ladder and transformers for input matching networks. 13th IEEE International Conference on Electronics, Circuits and Systems, 2006:792 http://ieeexplore.ieee.org/document/4263486/
[9]
Noh Y S, Yom I B, Park C S. Two-stage adaptive power amplifier MMIC for handset applications. European Microwave Conference, 2005, 3:4 http://ieeexplore.ieee.org/document/1610220/?reload=true&arnumber=1610220&contentType=Conference%20Publications
[10]
Liao H Y, Pan M W, Chiou H K. Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer. Electron Lett, 2010, 46(22):1490 doi: 10.1049/el.2010.2404
[11]
Li Y, Lopez J, Lie D Y C, et al. A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX. IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2011:137 http://ieeexplore.ieee.org/document/5719324/
Fig. 1.  (a) Fully differential amplifier. (b) Pseudo-differential amplifier.

Fig. 2.  Block diagram of the pseudo-differential broadband HBT power amplifier.

Fig. 3.  Half-circuit schematic.

Fig. 4.  Multi-stage broadband matching technique.

Fig. 5.  Adaptive bias circuit.

Fig. 6.  Layout of the proposed PA.

Fig. 7.  (a) EM simulation model of output matching network. (b) EM simulation results.

Fig. 8.  Photo of PCB test board.

Fig. 9.  (a) Measured $S$ parameter. (b) Measured PAE. (c) Measured output power.

Table 1.   Summary of broadband PAs.

[1]
Aniktar H, Sjoland H, Mikkelsen J H, et al. A class-AB 1.65 GHz-2 GHz broadband CMOS medium power amplifier. NORCHIP Conference, 2005:269 http://ieeexplore.ieee.org/document/1597041/
[2]
Chen Y J E, Yang L Y, Yeh W C. An integrated wideband power amplifier for cognitive radio. IEEE Trans Microw Theory Tech, 2007, 55(10):2053 doi: 10.1109/TMTT.2007.906497
[3]
Nellis K, Zampardi P J. A comparison of linear handset power amplifiers in different bipolar technologies. IEEE J Solid-State Circuits, 2004, 39(10):1746 doi: 10.1109/JSSC.2004.833761
[4]
Johnson J B, Joseph A J, Sheridan D C, et al. Silicon-germanium BiCMOS HBT technology for wireless power amplifier applications. IEEE J Solid-State Circuits, 2004, 39:1605 doi: 10.1109/JSSC.2004.833570
[5]
Alimenti F, Mezzanotte P, Roselli L, et al. Modeling and characterization of the bonding-wire interconnection. Microw Theory Tech, 2001, 49(1):142 doi: 10.1109/22.899975
[6]
Bahmani F, Sanchez-Sinencio E. A highly linear pseudo-differential transconductance[CMOS OTA]. ESSCIRC, 2004:111 http://ieeexplore.ieee.org/document/1356630/?reload=true&arnumber=1356630
[7]
Ismail A, Abidi A A. A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network. IEEE J Solid-State Circuits, 2004, 39(12):2269 doi: 10.1109/JSSC.2004.836344
[8]
Taris T, Elgharniti O, Begueret J B, et al. UWB LNAs using LC ladder and transformers for input matching networks. 13th IEEE International Conference on Electronics, Circuits and Systems, 2006:792 http://ieeexplore.ieee.org/document/4263486/
[9]
Noh Y S, Yom I B, Park C S. Two-stage adaptive power amplifier MMIC for handset applications. European Microwave Conference, 2005, 3:4 http://ieeexplore.ieee.org/document/1610220/?reload=true&arnumber=1610220&contentType=Conference%20Publications
[10]
Liao H Y, Pan M W, Chiou H K. Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer. Electron Lett, 2010, 46(22):1490 doi: 10.1049/el.2010.2404
[11]
Li Y, Lopez J, Lie D Y C, et al. A broadband SiGe power amplifier in an efficient polar transmitter using envelope-tracking for mobile WiMAX. IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2011:137 http://ieeexplore.ieee.org/document/5719324/
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2732 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 08 June 2012 Revised: 18 July 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenyuan Li, Qian Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. Journal of Semiconductors, 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001 W Y Li, Q Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. J. Semicond., 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001.Export: BibTex EndNote
      Citation:
      Wenyuan Li, Qian Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. Journal of Semiconductors, 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001

      W Y Li, Q Zhang. A novel broadband power amplifier in SiGe HBT technology[J]. J. Semicond., 2013, 34(1): 015001. doi: 10.1088/1674-4926/34/1/015001.
      Export: BibTex EndNote

      A novel broadband power amplifier in SiGe HBT technology

      doi: 10.1088/1674-4926/34/1/015001
      More Information
      • Corresponding author: Li Wenyuan, lwy555@seu.edu.cn
      • Received Date: 2012-06-08
      • Revised Date: 2012-07-18
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return