SEMICONDUCTOR PHYSICS

Hydrodynamic simulations of terahertz oscillation in double-layer graphene

Wei Feng

+ Author Affiliations

 Corresponding author: Wei Feng, wfeng@ujs.edu.cn

PDF

Turn off MathJax

Abstract: We have theoretically studied current self-oscillations in double-layer graphene n+nn+ diodes driven by dc bias with the help of a time-dependent hydrodynamic model. The current self-oscillation results from resonant tunneling in the double-layer graphene structure. A detailed investigation of the dependence of the current self-oscillations on the applied bias has been carried out. The frequencies of current self-oscillations are in the terahertz (THz) region. The double-layer graphene n+nn+ device studied here may be presented as a THz source at room temperature.

Key words: terahertzgraphenecurrent self-oscillation



[1]
Novoselov KS, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 doi: 10.1126/science.1102896
[2]
Apalkov V M, Chakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447 doi: 10.1103/PhysRevB.91.235447
[3]
Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438
[4]
Zheng Y, Ni G Xn, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602 doi: 10.1103/PhysRevLett.105.166602
[5]
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438 doi: 10.1103/PhysRevB.85.115438
[6]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574 doi: 10.1038/nnano.2010.132
[7]
Liu Z, Sanderson M, Zhang C, et al. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime. J Appl Phys, 2015, 118: 043106 doi: 10.1063/1.4927512
[8]
Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794 doi: 10.1038/ncomms2817
[9]
Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118 doi: 10.1063/1.4794952
[10]
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104 doi: 10.1088/0022-3727/45/32/325104
[11]
Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453 doi: 10.1103/PhysRevB.84.125453
[12]
Ridley B K. X centers in sodium chloride containing calcium. Proc Phys Soc, 1961, 77: 153 doi: 10.1088/0370-1328/77/1/319
[13]
Feng W, Cao J C. Theoretical study of terahertz current oscillation in GaAs1−xNx. J. Appl. Phys, 2008, 104: 013111 doi: 10.1063/1.2952017
[14]
Feng W, Cao J C. Nonlinear dynamics in GaAs1−xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708 doi: 10.1063/1.3177345
[15]
Zhang Z Z, Chang K, Chan K S. Resonant tunneling through double-bended graphene nanoribbons. Appl Phys Lett, 2008, 93: 062106 doi: 10.1063/1.2970957
[16]
Zhai F. Theory of huge tunneling magnetoresistance in graphene. Phys Rev B, 2008, 77: 113409 doi: 10.1103/PhysRevB.77.113409
Fig. 1.  (Color online) Analytical fit for the velocity-field relation of double-layer graphene at lattice temperature T = 300 K.

Fig. 2.  (Color online) Self-oscillation frequencies of double-layer graphene diode at lattice temperature T = 300 K.

Fig. 3.  (Color online) Temporal evolution of the current densities J(t) at different DC voltages.

[1]
Novoselov KS, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666 doi: 10.1126/science.1102896
[2]
Apalkov V M, Chakraborty T. Fractal butterflies in buckled graphenelike materials. Phys Rev B, 2015, 91: 235447 doi: 10.1103/PhysRevB.91.235447
[3]
Semnani B, Majedi A H, Safavi-Naeini S. Nonlinear quantum optical properties of graphene: the role of chirality and symmetry. Appl Phys Lett, 2015, 85: 115438
[4]
Zheng Y, Ni G Xn, Toh C T, et al. Graphene field-effect transistors with ferroelectric gating. Phys Rev Lett, 2010, 105: 166602 doi: 10.1103/PhysRevLett.105.166602
[5]
Ferreira A, Peres N M R, Ribeiro R M, et al. Graphene-based photodetector with two cavities. Phys Rev B, 2012, 85: 115438 doi: 10.1103/PhysRevB.85.115438
[6]
Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech, 2010, 5: 574 doi: 10.1038/nnano.2010.132
[7]
Liu Z, Sanderson M, Zhang C, et al. Nonlinear optical conductivity of bilayer graphene with Rashba spin-orbit interaction in the terahertz regime. J Appl Phys, 2015, 118: 043106 doi: 10.1063/1.4927512
[8]
Britnell L, Gorbachev R V, Geim A K, et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun, 2013, 4: 1794 doi: 10.1038/ncomms2817
[9]
Song Y, Wu H C, Guo Y. Negative differential resistances in graphene double barrier resonant tunneling diodes. Appl Phys Lett, 2013, 102: 093118 doi: 10.1063/1.4794952
[10]
Nguyen V H, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D, 2012, 45: 325104 doi: 10.1088/0022-3727/45/32/325104
[11]
Ferreira G J, Leuenberger M N, Loss D, et al. Low-bias negative differential resistance in graphene nanoribbon superlattices. Phys Rev B, 2011, 84: 125453 doi: 10.1103/PhysRevB.84.125453
[12]
Ridley B K. X centers in sodium chloride containing calcium. Proc Phys Soc, 1961, 77: 153 doi: 10.1088/0370-1328/77/1/319
[13]
Feng W, Cao J C. Theoretical study of terahertz current oscillation in GaAs1−xNx. J. Appl. Phys, 2008, 104: 013111 doi: 10.1063/1.2952017
[14]
Feng W, Cao J C. Nonlinear dynamics in GaAs1−xNx diodes under terahertz radiation. J Appl Phys, 2009, 106: 033708 doi: 10.1063/1.3177345
[15]
Zhang Z Z, Chang K, Chan K S. Resonant tunneling through double-bended graphene nanoribbons. Appl Phys Lett, 2008, 93: 062106 doi: 10.1063/1.2970957
[16]
Zhai F. Theory of huge tunneling magnetoresistance in graphene. Phys Rev B, 2008, 77: 113409 doi: 10.1103/PhysRevB.77.113409
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3392 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 24 April 2018 Revised: 08 May 2018 Online: Uncorrected proof: 13 September 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene[J]. Journal of Semiconductors, 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005 F Wei, Hydrodynamic simulations of terahertz oscillation in double-layer graphene[J]. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005.Export: BibTex EndNote
      Citation:
      Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene[J]. Journal of Semiconductors, 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

      F Wei, Hydrodynamic simulations of terahertz oscillation in double-layer graphene[J]. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005.
      Export: BibTex EndNote

      Hydrodynamic simulations of terahertz oscillation in double-layer graphene

      doi: 10.1088/1674-4926/39/12/122005
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 11604126).

      More Information
      • Corresponding author: wfeng@ujs.edu.cn
      • Received Date: 2018-04-24
      • Revised Date: 2018-05-08
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return