SEMICONDUCTOR INTEGRATED CIRCUITS

Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

Rui He1, Jianfei Xu1, Na Yan1, , Jie Sun1, Liqian Bian2 and Hao Min1

+ Author Affiliations

 Corresponding author: Yan Na, Email:yanna@fudan.edu.cn

PDF

Abstract: A high speed inductorless limiting amplifier (LA) in an optical communication receiver with the working speed up to 20 Gb/s is presented. The LA includes an input matching network, a four-stage 3rd order amplifier core, an output buffer for the test and a DC offset cancellation (DCOC). It uses the active interleaving feedback technique both to broaden the bandwidth and achieve the flatness response. Based on our careful analysis of the DCOC and stability, an error amplifier is added to the DCOC loop in order to keep the offset voltage reasonable. Fabricated in the 65 nm CMOS technology, the LA only occupies an area of 0.45×0.25 mm2 (without PAD). The measurement results show that the LA achieves a differential voltage gain of 37 dB, and a 3-dB bandwidth of 16.5 GHz. Up to 26.5 GHz, the Sdd11 and Sdd22 are less than -16 dB and -9 dB. The chip excluding buffer is supplied by 1.2 V VDD and draws a current of 50 mA.

Key words: inductorlesslimiting amplifieroptical communicaitoninterleaving feedbackDCOC



[1]
Säckinger E. Broadband circuits for optical fiber communication. Wiley-Interscience, 2005
[2]
Razavi B. Design of integrated circuits for optical communications. Wiley, 2012
[3]
Sackinger E, Fischer W C. A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers. IEEE J Solid-State Circuits, 2000, 35(12):1884 doi: 10.1109/4.890301
[4]
Galal S, Razavi B. 10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology. IEEE J Solid-State Circuits, 2003, 38(12):2138 doi: 10.1109/JSSC.2003.818567
[5]
Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback. IEEE J Solid-State Circuits, 2007, 42(5):1111 doi: 10.1109/JSSC.2007.894819
[6]
Sansen W M C. Analog design essentials. Springer, 2006
[7]
Tavernier F, Steyaert M. A low power, area efficient limiting amplifier in 90 nm CMOS. ESSCIRC, 2009: 128
[8]
Daneshgar S, Griffith Z, Rodwell M J W. A DC-100 GHz bandwidth and 20. 5 dB gain limiting amplifier in 0. 25μm InP DHBT technology. Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013: 1
[9]
Hou Z X, Wang Y P, Pan Q, et al. A 25-Gb/s 32. 1-dB CMOS limiting amplifier for integrated optical receivers. The 10th International Conference on ASIC (ASICON), 2013: 1
[10]
Chou S T, Huang S H, Hong Z H, et al. A 40 Gbps optical receiver analog front-end in 65 nm CMOS. IEEE International Symposium on Circuits and Systems (ISCAS), 2012: 1736
[11]
Akita I, Tsubouchi Y, Itakura T, et al. A 6 Gbps 3 mW optical receiver with DCOC-combined ATC in 65 nm CMOS. ESSCIRC, 2011: 343
Fig. 1.  Typical receiver of optical system.

Fig. 2.  Limiting amplifier architecture.

Fig. 3.  The required cell GBW and bandwidth as a function of the number of stages.

Fig. 4.  Detailed schematic and signal flow of the whole gain stage.

Fig. 5.  200 times Monte Carlo simulation for the process variation of (a) the local loop gain and (b) output offset voltage.

Fig. 6.  Equivalent single-ended input schematic.

Fig. 7.  Effect of pulse width distortion.

Fig. 8.  The impact of noise and offset on the BER (a) noise only (b) noise and offset voltage and (c) increase the power to get the same BER.

Fig. 9.  Architecture of DCOC.

Fig. 10.  Chip microphotograph.

Fig. 11.  Measured $S$-parameter.

Fig. 12.  Measured group delay of the LA.

Fig. 13.  Eye diagram of the PG short directly to the oscilloscope with the 20 dB attenuation.

Fig. 14.  Output eye diagram of input (a) 30 mVpp and (b) 100 mVpp.

Table 1.   Performance comparison of the LA with some recent works.

[1]
Säckinger E. Broadband circuits for optical fiber communication. Wiley-Interscience, 2005
[2]
Razavi B. Design of integrated circuits for optical communications. Wiley, 2012
[3]
Sackinger E, Fischer W C. A 3-GHz 32-dB CMOS limiting amplifier for SONET OC-48 receivers. IEEE J Solid-State Circuits, 2000, 35(12):1884 doi: 10.1109/4.890301
[4]
Galal S, Razavi B. 10-Gb/s limiting amplifier and laser/modulator driver in 0.18-μm CMOS technology. IEEE J Solid-State Circuits, 2003, 38(12):2138 doi: 10.1109/JSSC.2003.818567
[5]
Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback. IEEE J Solid-State Circuits, 2007, 42(5):1111 doi: 10.1109/JSSC.2007.894819
[6]
Sansen W M C. Analog design essentials. Springer, 2006
[7]
Tavernier F, Steyaert M. A low power, area efficient limiting amplifier in 90 nm CMOS. ESSCIRC, 2009: 128
[8]
Daneshgar S, Griffith Z, Rodwell M J W. A DC-100 GHz bandwidth and 20. 5 dB gain limiting amplifier in 0. 25μm InP DHBT technology. Compound Semiconductor Integrated Circuit Symposium (CSICS), 2013: 1
[9]
Hou Z X, Wang Y P, Pan Q, et al. A 25-Gb/s 32. 1-dB CMOS limiting amplifier for integrated optical receivers. The 10th International Conference on ASIC (ASICON), 2013: 1
[10]
Chou S T, Huang S H, Hong Z H, et al. A 40 Gbps optical receiver analog front-end in 65 nm CMOS. IEEE International Symposium on Circuits and Systems (ISCAS), 2012: 1736
[11]
Akita I, Tsubouchi Y, Itakura T, et al. A 6 Gbps 3 mW optical receiver with DCOC-combined ATC in 65 nm CMOS. ESSCIRC, 2011: 343
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2296 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 27 May 2012 Revised: 22 July 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Rui He, Jianfei Xu, Na Yan, Jie Sun, Liqian Bian, Hao Min. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology[J]. Journal of Semiconductors, 2014, 35(10): 105002. doi: 10.1088/1674-4926/35/10/105002 R He, J F Xu, N Yan, J Sun, L Q Bian, H Min. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology[J]. J. Semicond., 2014, 35(10): 105002. doi: 10.1088/1674-4926/35/10/105002.Export: BibTex EndNote
      Citation:
      Rui He, Jianfei Xu, Na Yan, Jie Sun, Liqian Bian, Hao Min. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology[J]. Journal of Semiconductors, 2014, 35(10): 105002. doi: 10.1088/1674-4926/35/10/105002

      R He, J F Xu, N Yan, J Sun, L Q Bian, H Min. Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology[J]. J. Semicond., 2014, 35(10): 105002. doi: 10.1088/1674-4926/35/10/105002.
      Export: BibTex EndNote

      Design and analysis of 20 Gb/s inductorless limiting amplifier in 65 nm CMOS technology

      doi: 10.1088/1674-4926/35/10/105002
      Funds:

      the National High Technology Research and Development Program of China 2011AA010404

      the General Program for International Science and Technology Cooperation Projects of China 2010DFB13040

      the National Natural Science Foundation of China 61076028

      Project supported by the National High Technology Research and Development Program of China (No. 2011AA010404), the General Program for International Science and Technology Cooperation Projects of China (No. 2010DFB13040), the National Natural Science Foundation of China (No. 61076028), and the Doctoral Program of Higher Education of China (No. 20100071120026)

      the Doctoral Program of Higher Education of China 20100071120026

      More Information
      • Corresponding author: Yan Na, Email:yanna@fudan.edu.cn
      • Received Date: 2012-05-27
      • Revised Date: 2014-07-22
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return