ARTICLES

Simulation analysis of a high efficiency GaInP/Si multijunction solar cell

M. Benaicha1, L. Dehimi1, 2, F. Pezzimenti3, and F. Bouzid4

+ Author Affiliations

 Corresponding author: F. Pezzimenti, Email: fortunato.pezzimenti@unirc.it

PDF

Turn off MathJax

Abstract: The solar power conversion efficiency of a gallium indium phosphide (GaInP)/silicon (Si) tandem solar cell has been investigated by means of a physical device simulator considering both mechanically stacked and monolithic structures. In particular, to interconnect the bottom and top sub-cells of the monolithic tandem, a gallium arsenide (GaAs)-based tunnel-junction, i.e. GaAs(n+)/GaAs(p+), which assures a low electrical resistance and an optically low-loss connection, has been considered. The J–V characteristics of the single junction cells, monolithic tandem, and mechanically stacked structure have been calculated extracting the main photovoltaic parameters. An analysis of the tunnel-junction behaviour has been also developed. The mechanically stacked cell achieves an efficiency of 24.27% whereas the monolithic tandem reaches an efficiency of 31.11% under AM1.5 spectral conditions. External quantum efficiency simulations have evaluated the useful wavelength range. The results and discussion could be helpful in designing high efficiency monolithic multijunction GaInP/Si solar cells involving a thin GaAs(n+)/GaAs(p+) tunnel junction.

Key words: GaInP/Sitandem solar cellspower efficiencynumerical simulations



[1]
Asadpour R, Chavali R V K, Khan M R, et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 2015, 106, 243902 doi: 10.1063/1.4922375
[2]
Bencherif H, Dehimi L, Pezzimenti F, et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 2019, 48, 3871 doi: 10.1007/s11664-019-07142-5
[3]
De Martino G, Pezzimenti F, Della Corte F G. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS, 2018: 147
[4]
Bouzid F, Dehimi L, Pezzimenti F, et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 2018, 122, 57 doi: 10.1016/j.spmi.2018.08.022
[5]
Bouzid F, Dehimi L, Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 2017, 46, 6563 doi: 10.1007/s11664-017-5696-1
[6]
Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 2018, 47, 1414 doi: 10.1007/s11664-017-5916-8
[7]
Fritah A, Dehimi L, Pezzimenti F, et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 2019, 48, 3692 doi: 10.1007/s11664-019-07129-2
[8]
Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 2018, 65, 3371 doi: 10.1109/TED.2018.2849693
[9]
Bencherif H, Dehimi L, Pezzimenti F, et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 2019, 125, 294 doi: 10.1007/s00339-019-2606-9
[10]
Olson J M, Friedman D J, Kurtz S. High efficiency III–V multi-junction solar cells. In: Handbook of Photovoltaic Science and Engineering. New York: John Wiley & Sons, 2003
[11]
Zheng Y, Mihara A, Yamamoto A. Analysis of In xGa1– xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 2013, 103, 153509 doi: 10.1063/1.4824885
[12]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 2012, 20, 12 doi: 10.1002/pip.2163
[13]
Connolly J P, Mencaraglia D, Renard C, et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 2014, 22, 810 doi: 10.1002/pip.2463
[14]
Bencherif H, Dehimi L, Pezzimenti F, et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 2019, 182, 682 doi: 10.1016/j.ijleo.2019.01.032
[15]
Green M A. Silicon wafer-based tandem cells: The ultimate photovoltaic solution. Proc SPIE Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 2014: 89810
[16]
Bencherif H, Dehimi L, Pezzimenti F, et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc 2018 International Conference on Applied Smart Systems, ICASS, 2019, 8651990
[17]
Liu H, Ren Z, Liu Z, et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 2015, 23, 382 doi: 10.1364/OE.23.00A382
[18]
Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 2008, 104, 024507 doi: 10.1063/1.2952031
[19]
Benaicha M, Dehimi L, Sengouga N. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 2017, 38, 044002 doi: 10.1088/1674-4926/38/4/044002
[20]
Lachaume R, Carioub R, Decobertb J, et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 2015, 84, 41 doi: 10.1016/j.egypro.2015.12.293
[21]
Essig S, Ward S, Steiner M A. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 2015, 77, 464 doi: 10.1016/j.egypro.2015.07.066
[22]
Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 2010, 207, 474 doi: 10.1002/pssa.200925210
[23]
Kınacı B, Özen Y, Asar T, et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 2013, 24, 3269 doi: 10.1007/s10854-013-1242-y
[24]
Marouf Y, Dehimi L, Bouzid F, et al. Theoretical design and performance of In xGa1– xN single junction solar cell. Optik, 2018, 163, 22 doi: 10.1016/j.ijleo.2018.02.106
[25]
Bouzid F, Pezzimenti F, Dehimi L, et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 2017, 56, 094301 doi: 10.7567/JJAP.56.094301
[26]
Zeghdar K, L Dehimi L, Pezzimenti F, et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 2019, 58, 014002 doi: 10.7567/1347-4065/aaf3ab
[27]
Marouf Y, Dehimi L, Pezzimenti F. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 2019, 130, 377 doi: 10.1016/j.spmi.2019.05.004
[28]
Walker A W, Wheeldon J F, Valdivia C E, et al. Simulation, modeling and comparison of III–V tunnel junction designs for high efficiency metamorphic multi-junction solar cells. Proc of SPIE, Photonics North, 2010: 7750
[29]
Bouzid F, Pezzimenti F, Dehimi L, et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 2019, 48, 4107 doi: 10.1007/s11664-019-07180-z
[30]
Haas A, Wilcox J, Gray J, et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 2011, 1, 180011 doi: 10.1117/1.3633244
[31]
Goldberg Y A. Handbook series on semiconductor parameters. Vol. 2. London: World Scientific, 1999
[32]
Brozel M R, Stillman G E. Properties of gallium arsenide. 3rd ed. London: Institution of Electrical Engineers, 1996
[33]
Adachi S. Optical constants of semiconductors in tables and figures: Handbook. London: World Scientific, 2012
[34]
Sze S M. Physics of semiconductors devices. 2nd ed. New York: John Wiley & Sons, 2001
[35]
Michael S, Lavery J. Multi-junction photovoltaic model optimization for space and solar concentrator applications. Proc 23rd European Photovoltaic Solar Energy Conference, 2008, 790
[36]
Hegedus S. Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2003
[37]
Geisz J F, Steiner M A, I Garcia I, et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 2013, 103, 0411181 doi: 10.1063/1.4816837
Fig. 1.  (Color online) Schematic cross-section of the MMJ GaInP/Si solar cell.

Fig. 2.  (Color online) Interpolation of (a) n and (b) K for Ga0.5In0.5P.

Fig. 3.  (Color online) J–V curve of the GaAs(n+)/GaAs(p+) TJ in dark.

Fig. 4.  (Color online) JV characteristics of the Si and GaInP single cells.

Fig. 5.  (Color online) J–V curve for both the single junction cells and the InGaP tandem structure.

Fig. 6.  (Color online) EQE of the GaInP top-cell and Si bottom-cell in the stacked structure.

Fig. 7.  (Color online) (a) Energy band diagram of the GaInP/Si tandem cell at thermodynamic equilibrium; EV and EC are the energy levels of the valence and conduction band, respectively. (b) Electric field profile.

Fig. 8.  (Color online) Comparison between the J–V curves of the MMJ tandem cell and the GaInP/Si mechanical stacked structure.

Table 1.   Structure of the simulated GaInP/Si MMJ tandem cell.

ParameterMaterialRoleThickness (μm)Net doping (cm−3)
Top-cellAlInP (n)
GaInP (p)
GaInP (n)
Al0.25Ga0.25-
In0.5P (p)
Window
Emitter
Base
BSF
0.02
1.00
0.03
0.02
2 × 1018
5 × 1017
1 × 1016
2 × 1018
Tunnel-junctionGaAs (p+)
GaAs (n+)
n++ layer
p++ layer
0.025
0.025
5 × 1019
5 × 1019
Bottom-cellSi (n)
Si (p)
Emitter
Base
3
180
5 × 1017
5 × 1017
DownLoad: CSV

Table 2.   Physical models.

ParameterExpression
Bandgap energy[28, 29]Eg(x) = −0.272x2 + 1.19x − 1.34
Electron affinity[30]χ(x) = 4.38 − 0.58x
Relative permittivity[31]εs(x) = 12.5 − 1.4x
Effective density of states[31, 32]${{N_{{\rm{c}},{\rm{v}}}} = 2{\left( {\dfrac{{\pi qKTm_{{\rm{e}},{\rm{h}}}^*}}{{{h^2}}}} \right)^{\frac{3}{2}}}}$
Carrier mobility[10, 31]${\mu _{\rm{n} } } = \displaystyle\frac{ {4000} }{ {\left[ {1 + { {\left( {\displaystyle\frac{N}{ {1 \times { {10}^{15} } } } } \right)}^{0.2} } } \right]} },{\mu _{\rm{p} } } = 40 \, {\rm{c} }{ {\rm{m} }^{\rm{2} } }{\rm{/} }\left( { {\rm{V} } \cdot {\rm{s} } } \right)$
DownLoad: CSV

Table 3.   PV parameters extracted from Fig. 4.

ParameterJsc (mA/cm2)Voc (V)FF (%)η (%)
GaInP single-cell16.751.4586.1120.99
Si single-cell37.70.5681.2717.45
DownLoad: CSV

Table 4.   PV parameters extracted from Fig. 5.

ParameterJsc (mA/cm2)Voc (V)FF (%)η (%)
GaInP top-cell16.751.4586.1120.99
Si bottom-cell13.060.4871.243.28
GaInP/Si tandem cell13.061.9396.924.27
DownLoad: CSV

Table 5.   PV parameters of the proposed GaInP/Si tandem solar cells.

ParameterJsc (mA/cm2)Voc (V)FF (%)η (%)
MMJ cell17.042.0787.9931.11
Mechanical stacked cell13.061.9396.924.27
DownLoad: CSV
[1]
Asadpour R, Chavali R V K, Khan M R, et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 2015, 106, 243902 doi: 10.1063/1.4922375
[2]
Bencherif H, Dehimi L, Pezzimenti F, et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 2019, 48, 3871 doi: 10.1007/s11664-019-07142-5
[3]
De Martino G, Pezzimenti F, Della Corte F G. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS, 2018: 147
[4]
Bouzid F, Dehimi L, Pezzimenti F, et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 2018, 122, 57 doi: 10.1016/j.spmi.2018.08.022
[5]
Bouzid F, Dehimi L, Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 2017, 46, 6563 doi: 10.1007/s11664-017-5696-1
[6]
Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 2018, 47, 1414 doi: 10.1007/s11664-017-5916-8
[7]
Fritah A, Dehimi L, Pezzimenti F, et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 2019, 48, 3692 doi: 10.1007/s11664-019-07129-2
[8]
Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 2018, 65, 3371 doi: 10.1109/TED.2018.2849693
[9]
Bencherif H, Dehimi L, Pezzimenti F, et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 2019, 125, 294 doi: 10.1007/s00339-019-2606-9
[10]
Olson J M, Friedman D J, Kurtz S. High efficiency III–V multi-junction solar cells. In: Handbook of Photovoltaic Science and Engineering. New York: John Wiley & Sons, 2003
[11]
Zheng Y, Mihara A, Yamamoto A. Analysis of In xGa1– xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 2013, 103, 153509 doi: 10.1063/1.4824885
[12]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 2012, 20, 12 doi: 10.1002/pip.2163
[13]
Connolly J P, Mencaraglia D, Renard C, et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 2014, 22, 810 doi: 10.1002/pip.2463
[14]
Bencherif H, Dehimi L, Pezzimenti F, et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 2019, 182, 682 doi: 10.1016/j.ijleo.2019.01.032
[15]
Green M A. Silicon wafer-based tandem cells: The ultimate photovoltaic solution. Proc SPIE Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 2014: 89810
[16]
Bencherif H, Dehimi L, Pezzimenti F, et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc 2018 International Conference on Applied Smart Systems, ICASS, 2019, 8651990
[17]
Liu H, Ren Z, Liu Z, et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 2015, 23, 382 doi: 10.1364/OE.23.00A382
[18]
Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 2008, 104, 024507 doi: 10.1063/1.2952031
[19]
Benaicha M, Dehimi L, Sengouga N. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 2017, 38, 044002 doi: 10.1088/1674-4926/38/4/044002
[20]
Lachaume R, Carioub R, Decobertb J, et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 2015, 84, 41 doi: 10.1016/j.egypro.2015.12.293
[21]
Essig S, Ward S, Steiner M A. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 2015, 77, 464 doi: 10.1016/j.egypro.2015.07.066
[22]
Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 2010, 207, 474 doi: 10.1002/pssa.200925210
[23]
Kınacı B, Özen Y, Asar T, et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 2013, 24, 3269 doi: 10.1007/s10854-013-1242-y
[24]
Marouf Y, Dehimi L, Bouzid F, et al. Theoretical design and performance of In xGa1– xN single junction solar cell. Optik, 2018, 163, 22 doi: 10.1016/j.ijleo.2018.02.106
[25]
Bouzid F, Pezzimenti F, Dehimi L, et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 2017, 56, 094301 doi: 10.7567/JJAP.56.094301
[26]
Zeghdar K, L Dehimi L, Pezzimenti F, et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 2019, 58, 014002 doi: 10.7567/1347-4065/aaf3ab
[27]
Marouf Y, Dehimi L, Pezzimenti F. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 2019, 130, 377 doi: 10.1016/j.spmi.2019.05.004
[28]
Walker A W, Wheeldon J F, Valdivia C E, et al. Simulation, modeling and comparison of III–V tunnel junction designs for high efficiency metamorphic multi-junction solar cells. Proc of SPIE, Photonics North, 2010: 7750
[29]
Bouzid F, Pezzimenti F, Dehimi L, et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 2019, 48, 4107 doi: 10.1007/s11664-019-07180-z
[30]
Haas A, Wilcox J, Gray J, et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 2011, 1, 180011 doi: 10.1117/1.3633244
[31]
Goldberg Y A. Handbook series on semiconductor parameters. Vol. 2. London: World Scientific, 1999
[32]
Brozel M R, Stillman G E. Properties of gallium arsenide. 3rd ed. London: Institution of Electrical Engineers, 1996
[33]
Adachi S. Optical constants of semiconductors in tables and figures: Handbook. London: World Scientific, 2012
[34]
Sze S M. Physics of semiconductors devices. 2nd ed. New York: John Wiley & Sons, 2001
[35]
Michael S, Lavery J. Multi-junction photovoltaic model optimization for space and solar concentrator applications. Proc 23rd European Photovoltaic Solar Energy Conference, 2008, 790
[36]
Hegedus S. Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2003
[37]
Geisz J F, Steiner M A, I Garcia I, et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 2013, 103, 0411181 doi: 10.1063/1.4816837
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3483 Times PDF downloads: 73 Times Cited by: 0 Times

    History

    Received: 27 May 2019 Revised: 24 October 2019 Online: Accepted Manuscript: 10 January 2020Uncorrected proof: 16 January 2020Published: 01 March 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      M. Benaicha, L. Dehimi, F. Pezzimenti, F. Bouzid. Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. Journal of Semiconductors, 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701 M Benaicha, L Dehimi, F Pezzimenti, F Bouzid, Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. J. Semicond., 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701.Export: BibTex EndNote
      Citation:
      M. Benaicha, L. Dehimi, F. Pezzimenti, F. Bouzid. Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. Journal of Semiconductors, 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701

      M Benaicha, L Dehimi, F Pezzimenti, F Bouzid, Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. J. Semicond., 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701.
      Export: BibTex EndNote

      Simulation analysis of a high efficiency GaInP/Si multijunction solar cell

      doi: 10.1088/1674-4926/41/3/032701
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return