SEMICONDUCTOR MATERIALS

Defects in CdMnTe crystals for nuclear detector applications

Yuanyuan Du, Wanqi Jie, Yadong Xu, Xin Zheng, Tao Wang and Hui Yu

+ Author Affiliations

 Corresponding author: Du Yuanyuan, Email:duyy1983@163.com, duyy1983@gmail.com

PDF

Abstract: A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FE-SEM) were used to study the defects in CdMnTe crystals, such as twin boundaries, Te inclusions, and dislocations. Twin boundaries were usually decorated with Te inclusions, which could induce dislocations. The optical, electrical properties and detector performance of CdMnTe crystals with twins and free of twins were compared. The results showed that the wafers with a high density of twins usually had lower average IR transmittance and poorer crystalline quality. Besides, the energy spectra indicated that twin boundaries in a CdMnTe detector had a negative effect on detector performance; the values of both the energy resolution and (μτ)e were nearly half of those for a single crystal detector.

Key words: CdMnTetwin boundaryTe inclusionsdislocationsdetector response



[1]
Mycielski A, Burger A, Sowinska M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors. Phys Status Solidi C, 2005, 2(5):1578 doi: 10.1002/(ISSN)1610-1642
[2]
Hossain A, Cui Y, Bolltnikov A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X-and gamma-ray. J Electron Mater, 2009, 38(8):1593 doi: 10.1007/s11664-009-0780-9
[3]
Babalola O S, Bolotnikov A E, Groza M, et al. Study of Te inclusions in CdMnTe crystals for nuclear detector applications. J Cryst Growth, 2009, 311(14):3702 doi: 10.1016/j.jcrysgro.2009.04.037
[4]
Zhang J, Jie W, Wang L, et al. Twins in CdMnTe single crystals grown by Bridgman method. Cryst Res Technol, 2010, 45(1):7 doi: 10.1002/crat.v45:1
[5]
Babalola O S, Bolotnikov A E, Egarievwe S U, et al. Effect of Te inclusions on internal electric field of CdMnTe gamma-ray detectors. Proc SPIE, 2009, 7449:74491A-1 doi: 10.1117/12.829870
[6]
Heffelfinger J R, Medlin D L, James R B. Analysis of grain boundaries, twin boundaries and Te precipitates in Cd1-xZnxTe grown by higher pressure Bridgman method. Mater Res Soc Symp Proc, 1998, 487:33
[7]
Xu Y, He Y, Wang T, et al. Investigation of Te inclusions induced glides and the corresponding dislocations in CdZnTe crystal. Cryst Eng Commun, 2012, 14:417 doi: 10.1039/C1CE05843F
[8]
Brunett B A, van Scyoc J M, Hilton N R, et al. The performation effects of crystal boundaries in cadmium zinc telluride radiation spectrometers. IEEE Trans Nucl Sci, 2000, 47:1353 doi: 10.1109/23.872977
[9]
Schlesinger T E, Toney J E, Yoon H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater Sci Eng R, 2001, 32:103 doi: 10.1016/S0927-796X(01)00027-4
[10]
Du Y, Jie W, Wang T, et al. Vertical Bridgman growth and characterization of CdMnTe crystals for gamma-ray detector. J Cryst Growth, 2011, 318:1062 doi: 10.1016/j.jcrysgro.2010.11.086
[11]
Ashraf M, Gupta C, Chollet F, et al. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder. Opt Lasers Eng, 2008, 46:711 doi: 10.1016/j.optlaseng.2008.05.008
[12]
Sung L, Jasmin J, Gu X, et al. Use of Laser Scanning confocal microscopy for characterizing changes in film thickness and local surface morphology of UV-exposed polymer coatings. J Coat Technol Res, 2004, 1:267 doi: 10.1007/s11998-004-0029-8
[13]
Faucheu J, Wood K A, Sung L, et al. Relating gloss loss to topographical features of a PVDF coating. J Coat Technol Res, 2006, 3:29 doi: 10.1007/s11998-006-0003-8
[14]
Yu P, Jie W, Wang T. Thermal treatment of indium-doped Cd1-xZnxTe single crystals. Cryst Eng Commun, 2011, 13:3521 doi: 10.1039/c0ce00958j
[15]
Yang G, Bolotnikov A E, Camarda G S, et al. Internal electric field investigations of a cadmium zinc telluride detector using synchrotron X-ray mapping and pockels effect measurements. J Electron Mater, 2009, 38:1563 doi: 10.1007/s11664-009-0799-y
[16]
Nemirovsky Y. Statistical modeling of charge collection in semiconductor gamma-ray spectrometers. J Appl Phys, 1999, 85:8 doi: 10.1063/1.369425
Fig. 1.  Morphology of twins and decorated Te inclusions shown by a laser confocal microscope laser. (a) 2D intensity projection image of twins and decorated Te inclusions. (b) 3D topographic profile of twins and decorated Te inclusions. (c) 2D intensity projection image, 3D topographic profile and the height profile graph of a single Te inclusion

Fig. 2.  FE-SEM images of a twin boundary surrounded with Te inclusions and dislocations. (a) Secondary electron mode. (b) Backscattering mode of a typical Te inclusion and the corresponding etch pits

Fig. 3.  I-V curves of CdMnTe wafers of single crystal and crystals with twin boundaries

Fig. 4.  Typical IR transmittance spectrum of CdMnTe wafers of single crystal and crystals with twin boundaries

Fig. 5.  PL spectra of CdMnTe wafers. (a) Single crystal. (b) Wafer with twin boundaries

Fig. 6.  Typical $^{241}$Am @ 59.5 keV gamma-ray spectroscopy response from a planar device fabricated by CdMnTe wafers of single crystal and crystals with twin boundaries

Fig. 7.  Representative plots (solid line) of $^{241}$Am gamma ray peak position versus bias voltage fitted by the Hecht equation of CdMnTe detectors fabricated by CdMnTe wafers of single crystal and crystals with twin boundaries, the squares and triangles are the experimental data

[1]
Mycielski A, Burger A, Sowinska M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors. Phys Status Solidi C, 2005, 2(5):1578 doi: 10.1002/(ISSN)1610-1642
[2]
Hossain A, Cui Y, Bolltnikov A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X-and gamma-ray. J Electron Mater, 2009, 38(8):1593 doi: 10.1007/s11664-009-0780-9
[3]
Babalola O S, Bolotnikov A E, Groza M, et al. Study of Te inclusions in CdMnTe crystals for nuclear detector applications. J Cryst Growth, 2009, 311(14):3702 doi: 10.1016/j.jcrysgro.2009.04.037
[4]
Zhang J, Jie W, Wang L, et al. Twins in CdMnTe single crystals grown by Bridgman method. Cryst Res Technol, 2010, 45(1):7 doi: 10.1002/crat.v45:1
[5]
Babalola O S, Bolotnikov A E, Egarievwe S U, et al. Effect of Te inclusions on internal electric field of CdMnTe gamma-ray detectors. Proc SPIE, 2009, 7449:74491A-1 doi: 10.1117/12.829870
[6]
Heffelfinger J R, Medlin D L, James R B. Analysis of grain boundaries, twin boundaries and Te precipitates in Cd1-xZnxTe grown by higher pressure Bridgman method. Mater Res Soc Symp Proc, 1998, 487:33
[7]
Xu Y, He Y, Wang T, et al. Investigation of Te inclusions induced glides and the corresponding dislocations in CdZnTe crystal. Cryst Eng Commun, 2012, 14:417 doi: 10.1039/C1CE05843F
[8]
Brunett B A, van Scyoc J M, Hilton N R, et al. The performation effects of crystal boundaries in cadmium zinc telluride radiation spectrometers. IEEE Trans Nucl Sci, 2000, 47:1353 doi: 10.1109/23.872977
[9]
Schlesinger T E, Toney J E, Yoon H, et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater Sci Eng R, 2001, 32:103 doi: 10.1016/S0927-796X(01)00027-4
[10]
Du Y, Jie W, Wang T, et al. Vertical Bridgman growth and characterization of CdMnTe crystals for gamma-ray detector. J Cryst Growth, 2011, 318:1062 doi: 10.1016/j.jcrysgro.2010.11.086
[11]
Ashraf M, Gupta C, Chollet F, et al. Geometrical characterization techniques for microlens made by thermal reflow of photoresist cylinder. Opt Lasers Eng, 2008, 46:711 doi: 10.1016/j.optlaseng.2008.05.008
[12]
Sung L, Jasmin J, Gu X, et al. Use of Laser Scanning confocal microscopy for characterizing changes in film thickness and local surface morphology of UV-exposed polymer coatings. J Coat Technol Res, 2004, 1:267 doi: 10.1007/s11998-004-0029-8
[13]
Faucheu J, Wood K A, Sung L, et al. Relating gloss loss to topographical features of a PVDF coating. J Coat Technol Res, 2006, 3:29 doi: 10.1007/s11998-006-0003-8
[14]
Yu P, Jie W, Wang T. Thermal treatment of indium-doped Cd1-xZnxTe single crystals. Cryst Eng Commun, 2011, 13:3521 doi: 10.1039/c0ce00958j
[15]
Yang G, Bolotnikov A E, Camarda G S, et al. Internal electric field investigations of a cadmium zinc telluride detector using synchrotron X-ray mapping and pockels effect measurements. J Electron Mater, 2009, 38:1563 doi: 10.1007/s11664-009-0799-y
[16]
Nemirovsky Y. Statistical modeling of charge collection in semiconductor gamma-ray spectrometers. J Appl Phys, 1999, 85:8 doi: 10.1063/1.369425
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2338 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 03 September 2012 Revised: 03 October 2012 Online: Published: 01 April 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuanyuan Du, Wanqi Jie, Yadong Xu, Xin Zheng, Tao Wang, Hui Yu. Defects in CdMnTe crystals for nuclear detector applications[J]. Journal of Semiconductors, 2013, 34(4): 043003. doi: 10.1088/1674-4926/34/4/043003 Y Y Du, W Q Jie, Y D Xu, X Zheng, T Wang, H Yu. Defects in CdMnTe crystals for nuclear detector applications[J]. J. Semicond., 2013, 34(4): 043003. doi: 10.1088/1674-4926/34/4/043003.Export: BibTex EndNote
      Citation:
      Yuanyuan Du, Wanqi Jie, Yadong Xu, Xin Zheng, Tao Wang, Hui Yu. Defects in CdMnTe crystals for nuclear detector applications[J]. Journal of Semiconductors, 2013, 34(4): 043003. doi: 10.1088/1674-4926/34/4/043003

      Y Y Du, W Q Jie, Y D Xu, X Zheng, T Wang, H Yu. Defects in CdMnTe crystals for nuclear detector applications[J]. J. Semicond., 2013, 34(4): 043003. doi: 10.1088/1674-4926/34/4/043003.
      Export: BibTex EndNote

      Defects in CdMnTe crystals for nuclear detector applications

      doi: 10.1088/1674-4926/34/4/043003
      Funds:

      the National Natural Science Foundations of China 50902113

      NPU Foundation for Fundamental Research JC20100228

      the Research Fund of the State Key Laboratory of Solidification Processing, China SKLSP201012

      the National Basic Research Program of China 2011CB610406

      Project supported by the National Natural Science Foundations of China (Nos. 50902113, 50902114, 61274081), the National Basic Research Program of China (No. 2011CB610406), the 111 Project of China (No. B08040), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120014), NPU Foundation for Fundamental Research (No. JC20100228), and the Research Fund of the State Key Laboratory of Solidification Processing, China (No. SKLSP201012)

      the National Natural Science Foundations of China 50902114

      the Specialized Research Fund for the Doctoral Program of Higher Education of China 20116102120014

      the 111 Project of China B08040

      the National Natural Science Foundations of China 61274081

      More Information
      • Corresponding author: Du Yuanyuan, Email:duyy1983@163.com, duyy1983@gmail.com
      • Received Date: 2012-09-03
      • Revised Date: 2012-10-03
      • Published Date: 2013-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return