SEMICONDUCTOR PHYSICS

Magnetic flux assisted thermospin transport in a Rashba ring

Feng Liang1, , Benling Gao1 and Yu Gu2

+ Author Affiliations

 Corresponding author: Liang Feng, Email: bd10583@163.com

PDF

Abstract: The electron transport through a Rashba ring with a magnetic flux and driven by a temperature difference is investigated. It is found that the spin interference effect induced by the Rashba spin-orbit interaction and by the magnetic flux can break the balance between the spin-up and spin-down component currents in the thermally driven charge current and thus result in a spin current. The analytical derivation and numerical calculations reveal that the magnitude, sign, peaks and spin-polarization of the generated spin current can be readily modulated by the system parameters. In particular, with some choices of the parameters, the spin polarization of the generated spin current can reach 100%, that is, a fully spin-polarized thermospin current can be produced. These results may help the use of the spin-dependent Seebeck effect to generate and manipulate a spin current.

Key words: spin currentSeebeck effectRashba ring



[1]
Wang B G, Wang J, Guo H. Quantum spin field effect transistor. Phys Rev B, 2003, 67: 092408 doi: 10.1103/PhysRevB.67.092408
[2]
Brataas A, Tserkovnyak Y, Bauer G E W, et al. Spin battery operated by ferromagnetic resonance. Phys Rev B, 2002, 66: 060404(R) doi: 10.1103/PhysRevB.66.060404
[3]
Busl M, Platero G. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields. Phys Rev B, 2010, 82: 205304 doi: 10.1103/PhysRevB.82.205304
[4]
Chen S H, Chen C L, Chang C R, et al. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets: a charge-conserving Floquet nonequilibrium Green function approach. Phys Rev B, 2013, 87: 045402 http://cn.bing.com/academic/profile?id=2066769450&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature. Science, 2003, 301: 1348 doi: 10.1126/science.1087128
[6]
Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect. Phys Rev Lett, 2004, 92 :126603 doi: 10.1103/PhysRevLett.92.126603
[7]
Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin Hall effect in semiconductors. Science, 2004, 306 :1910 doi: 10.1126/science.1105514
[8]
Wunderlich J, Kaestner B, Sinova J, et al. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett, 2005, 94: 047204 doi: 10.1103/PhysRevLett.94.047204
[9]
Katsura H, Nagaosa N, Balatsky A V. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett, 2005, 95: 057205 doi: 10.1103/PhysRevLett.95.057205
[10]
Lee Y L, Lee Y W. Quantum dynamics of tunneling between ferromagnets. Phys Rev B, 2003, 68: 184413 doi: 10.1103/PhysRevB.68.184413
[11]
Wang J, Chan K S. Equilibrium spin current through tunneling junctions. Phys Rev B, 2003, 74: 035342
[12]
Chi F, Zheng J. Spin separation via a three-terminal Aharonov-Bohm interferometers. Appl Phys Lett, 2008, 92: 062106 doi: 10.1063/1.2857471
[13]
Lu H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction. Appl Phys Lett, 2007, 91: 092128 doi: 10.1063/1.2777149
[14]
Du J, Wang S X, Pan J H, et al. Persistent spin currents in a triple-terminal quantum ring with three arms. Journal of Semiconductors, 2011, 32: 042002 doi: 10.1088/1674-4926/32/4/042002
[15]
Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. Nat Mater, 2010, 10: 742 http://cn.bing.com/academic/profile?id=2134072134&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Liebing N, Serrano-Guisan S, Rott K, et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys Rev Lett, 2011, 107: 177201 doi: 10.1103/PhysRevLett.107.177201
[17]
Lin W, Hehn M, Chaput L, et al. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Commun, 2012, 3: 744 doi: 10.1038/ncomms1748
[18]
Dubi Y, Di Ventra M. Thermospin effects in a quantum dot connected to ferromagnetic leads. Phys Rev B, 2009, 79: 081302(R) doi: 10.1103/PhysRevB.79.081302
[19]
Haug H, Jauho A P. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1998
[20]
Grundler D. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys Rev Lett, 2000, 84: 6074 doi: 10.1103/PhysRevLett.84.6074
[21]
Hao Yafei, Chen Yonghai, Hao Guodong, et al. Effect of a step quantum well structure and an electric-field on the Rashba spin splitting. Journal of Semiconductors, 2009, 30: 062001 doi: 10.1088/1674-4926/30/6/062001
Fig. 1.  Schematic of a two-terminal thermospin device, which consists of two normal conducting leads and a Rashba ring threaded by a magnetic flux. 279×361 mm2 (300×300 DPI2).

Fig. 2.  The tunneling spin current (solid line) and charge current (dashed line) versus φ for φ=π/2 and for (a) tLR=0.1, (b) tLR=0.4, (c) tLR=0.8 and (d) the spin polarization versus φ for different values of tLR. 304×609 mm2 (300×300 DPI2).

Fig. 3.  The induced spin current versus tLR for φ=π/2.99×70 mm2 (300×300 DPI2).

[1]
Wang B G, Wang J, Guo H. Quantum spin field effect transistor. Phys Rev B, 2003, 67: 092408 doi: 10.1103/PhysRevB.67.092408
[2]
Brataas A, Tserkovnyak Y, Bauer G E W, et al. Spin battery operated by ferromagnetic resonance. Phys Rev B, 2002, 66: 060404(R) doi: 10.1103/PhysRevB.66.060404
[3]
Busl M, Platero G. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields. Phys Rev B, 2010, 82: 205304 doi: 10.1103/PhysRevB.82.205304
[4]
Chen S H, Chen C L, Chang C R, et al. Spin-charge conversion in a multiterminal Aharonov-Casher ring coupled to processing ferromagnets: a charge-conserving Floquet nonequilibrium Green function approach. Phys Rev B, 2013, 87: 045402 http://cn.bing.com/academic/profile?id=2066769450&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Murakami S, Nagaosa N, Zhang S C. Dissipationless quantum spin current at room temperature. Science, 2003, 301: 1348 doi: 10.1126/science.1087128
[6]
Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect. Phys Rev Lett, 2004, 92 :126603 doi: 10.1103/PhysRevLett.92.126603
[7]
Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin Hall effect in semiconductors. Science, 2004, 306 :1910 doi: 10.1126/science.1105514
[8]
Wunderlich J, Kaestner B, Sinova J, et al. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett, 2005, 94: 047204 doi: 10.1103/PhysRevLett.94.047204
[9]
Katsura H, Nagaosa N, Balatsky A V. Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett, 2005, 95: 057205 doi: 10.1103/PhysRevLett.95.057205
[10]
Lee Y L, Lee Y W. Quantum dynamics of tunneling between ferromagnets. Phys Rev B, 2003, 68: 184413 doi: 10.1103/PhysRevB.68.184413
[11]
Wang J, Chan K S. Equilibrium spin current through tunneling junctions. Phys Rev B, 2003, 74: 035342
[12]
Chi F, Zheng J. Spin separation via a three-terminal Aharonov-Bohm interferometers. Appl Phys Lett, 2008, 92: 062106 doi: 10.1063/1.2857471
[13]
Lu H F, Guo Y. Pure spin current in a three-terminal spin device in the presence of Rashba spin-orbit interaction. Appl Phys Lett, 2007, 91: 092128 doi: 10.1063/1.2777149
[14]
Du J, Wang S X, Pan J H, et al. Persistent spin currents in a triple-terminal quantum ring with three arms. Journal of Semiconductors, 2011, 32: 042002 doi: 10.1088/1674-4926/32/4/042002
[15]
Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. Nat Mater, 2010, 10: 742 http://cn.bing.com/academic/profile?id=2134072134&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Liebing N, Serrano-Guisan S, Rott K, et al. Tunneling magnetothermopower in magnetic tunnel junction nanopillars. Phys Rev Lett, 2011, 107: 177201 doi: 10.1103/PhysRevLett.107.177201
[17]
Lin W, Hehn M, Chaput L, et al. Giant spin-dependent thermoelectric effect in magnetic tunnel junctions. Nature Commun, 2012, 3: 744 doi: 10.1038/ncomms1748
[18]
Dubi Y, Di Ventra M. Thermospin effects in a quantum dot connected to ferromagnetic leads. Phys Rev B, 2009, 79: 081302(R) doi: 10.1103/PhysRevB.79.081302
[19]
Haug H, Jauho A P. Quantum kinetics in transport and optics of semiconductors. Berlin: Springer, 1998
[20]
Grundler D. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys Rev Lett, 2000, 84: 6074 doi: 10.1103/PhysRevLett.84.6074
[21]
Hao Yafei, Chen Yonghai, Hao Guodong, et al. Effect of a step quantum well structure and an electric-field on the Rashba spin splitting. Journal of Semiconductors, 2009, 30: 062001 doi: 10.1088/1674-4926/30/6/062001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2642 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 29 September 2015 Revised: 12 April 2016 Online: Published: 01 October 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Feng Liang, Benling Gao, Yu Gu. Magnetic flux assisted thermospin transport in a Rashba ring[J]. Journal of Semiconductors, 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003 F Liang, B L Gao, Y Gu. Magnetic flux assisted thermospin transport in a Rashba ring[J]. J. Semicond., 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003.Export: BibTex EndNote
      Citation:
      Feng Liang, Benling Gao, Yu Gu. Magnetic flux assisted thermospin transport in a Rashba ring[J]. Journal of Semiconductors, 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003

      F Liang, B L Gao, Y Gu. Magnetic flux assisted thermospin transport in a Rashba ring[J]. J. Semicond., 2016, 37(10): 102003. doi: 10.1088/1674-4926/37/10/102003.
      Export: BibTex EndNote

      Magnetic flux assisted thermospin transport in a Rashba ring

      doi: 10.1088/1674-4926/37/10/102003
      Funds:

      National Natural Science Foundation of China 11404142

      Project supported by the National Natural Science Foundation of China (No.11404142).

      More Information
      • Corresponding author: Liang Feng, Email: bd10583@163.com
      • Received Date: 2015-09-29
      • Revised Date: 2016-04-12
      • Published Date: 2016-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return