SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian and Yixin Zhao

+ Author Affiliations

 Corresponding author: Yixin Zhao,Email:yixin.zhao@sjtu.edu.cn

PDF

Abstract: The CH3NH3PbI3 (MAPbI3) perovskite was usually prepared by high-purity PbI2 with high cost. The low cost and low-purity PbI2 was seldom reported for fabrication of MAPbI3 because it cannot even dissolve well in widely adopted solvent of DMF. We developed an easy method to adapt low-purity PbI2 for fabrication of high quality MAPbI3 just by the simple addition of some hydrochloric acid into the mixture of low-purity PbI2, MAI and DMF. This straightforward method can not only help dissolve the low quality PbI2 by reacting with some impurities in DMF, but also lead to a successful fabrication of high-quality perovskite solar cells with up to 14.80% efficiency comparable to the high quality PbI2 precursors.

Key words: perovskite materiallow-quality PbI2hydrochloric acid



[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17):6050 doi: 10.1021/ja809598r
[2]
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10):4088 doi: 10.1039/c1nr10867k
[3]
Bi D, Yang L, Boschloo G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskitesensitized mesoscopic solar cells. J Phys Chem Lett, 2013, 4(9):1532 doi: 10.1021/jz400638x
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458):316 doi: 10.1038/nature12340
[5]
Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett, 2013, 4(15):2423 doi: 10.1021/jz400892a
[6]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52(15):9019 doi: 10.1021/ic401215x
[7]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156):341 doi: 10.1126/science.1243982
[8]
Zhao Y, Zhu K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett, 2013, 4(17):2880 doi: 10.1021/jz401527q
[9]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194):295 doi: 10.1126/science.1254763
[10]
Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J Am Chem Soc, 2014, 136(35):12241 doi: 10.1021/ja5071398
[11]
Dai X, Shi C, Zhang Y, et al. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J Semicond, 2015, 36(7):074003 doi: 10.1088/1674-4926/36/7/074003
[12]
Li G, Zhang T, Zhao Y. Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J Mater Chem A, 2015, 3(39):19674 doi: 10.1039/C5TA06172E
[13]
Nie W Y, Tsai H H, Asadpour R, et al. High-efficiency solutionprocessed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221):522 doi: 10.1126/science.aaa0472
[14]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240):1234 doi: 10.1126/science.aaa9272
[15]
Zhang T, Zhao Y. Recent progress of lead halide perovskite sensitized solar cells. Acta Chim Sinica, 2015, 73(3):202 doi: 10.6023/A14090656
[16]
Zhang T Y, Yang M J, Benson E E, et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)3. Chem Commun, 2015, 51(37):7820 doi: 10.1039/C5CC01835H
[17]
Si F, Tang F, Xue H, et al. Effects of defect states on the performance of perovskite solar cells. J Semicond, 2016, 37(7):072003 doi: 10.1088/1674-4926/37/7/072003
[18]
Wu Y, Yang R, Tian H, et al. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J Semicond, 2016, 37(5):053002 doi: 10.1088/1674-4926/37/5/053002
[19]
You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotech, 2016, 11(1):75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Zhang J, Shi C, Chen J, et al. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J Semicond, 2016, 37(3):033002 doi: 10.1088/1674-4926/37/3/033002
[21]
Zhao Y X, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45(3):655 doi: 10.1039/C4CS00458B
[22]
Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem Lett, 2014, 43(5):711 doi: 10.1246/cl.140074
[23]
Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[24]
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photon, 2014, 8(7):506 doi: 10.1038/nphoton.2014.134
[25]
Chen Y N, Zhao Y X, Liang Z Q. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem Mater, 2015, 27(5):1448 doi: 10.1021/acs.chemmater.5b00041
[26]
Dar M I, Arora N, Gao P, et al. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett, 2014, 14(12): 6991 doi: 10.1021/nl503279x
[27]
Dar M I, Ramos F J, Xue Z, et al. Photoanode based on (001)-oriented anatase nanoplatelets for organic-inorganic lead iodide perovskite solar cell. Chem Mater, 2014, 26(16):4675 doi: 10.1021/cm502185s
[28]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107):643 doi: 10.1126/science.1228604
[29]
Li X, Dar M J, Yi C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat Chem, 2015, 7(9):703 doi: 10.1038/nchem.2324
[30]
Lv S L, Pang S P, Zhou Y Y, et al. One-step, solution-processed formamidinium lead trihalide FAPbI3-xClx for mesoscopic perovskite-polymer solar cells. Phys Chem Chem Phys, 2014, 16(36):19206 doi: 10.1039/C4CP02113D
[31]
Qing J, Chandran H T, Cheng Y H, et al. Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl Mater Interfaces, 2015, 7(41):23110 doi: 10.1021/acsami.5b06819
[32]
Wang D, Liu Z H, Zhou Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors. Chem Mater, 2014, 26(24):7145 doi: 10.1021/cm5037869
[33]
Wang Z W, Zhou Y Y, Pang S P, et al. Additive-modulated evolution of HC(NH2)(2)PbI3 black polymorph for mesoscopic perovskite solar cells. Chem Mater, 2015, 27(20):7149 doi: 10.1021/acs.chemmater.5b03169
[34]
Xu M, Rong Y, Ku Z, et al. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J Mater Chem A, 2014, 2(23):8607 doi: 10.1039/c4ta00379a
[35]
Yan K Y, Long M Z, Zhang T K, et al. Hybrid halide perovskite solar cell precursors:colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc, 2015, 137(13):4460 doi: 10.1021/jacs.5b00321
[36]
Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118(18):9412 doi: 10.1021/jp502696w
[37]
Zhang T, Guo N, Li G, et al. A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26:50 doi: 10.1016/j.nanoen.2016.05.003
[38]
Bi D Q, El-Zohry A M, Hagfeldt A, et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics, 2015, 2(5):589 doi: 10.1021/ph500255t
[39]
Cao D H, Stoumpos C C, Malliakas C D, et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells. APL Mater, 2014, 2(9):091101 doi: 10.1063/1.4895038
[40]
Kim Y C, Jeon N J, Noh J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv Energy Mater, 2016, 6(4):8
[41]
Lee Y H, Luo J S, Humphry-Baker R, et al. Unraveling the reasons for efficiency loss in perovskite solar cells. Adv Funct Mater, 2015, 25(25):3925 doi: 10.1002/adfm.v25.25
[42]
Liu F, Dong Q, Wong M K, et al. Is excess PbI2 beneficial for perovskite solar cell performance. Adv Energy Mater, 2016, 6(7):1502206 doi: 10.1002/aenm.201502206
[43]
Wang L, McCleese C, Kovalsky A, et al. Femtosecond timeresolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films:evidence for passivation effect of PbI2. J Am Chem Soc, 2014, 136(35):12205 doi: 10.1021/ja504632z
[44]
Wang S M, Dong W W, Fang X D, et al. Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells. Nanoscale, 2016, 8(12):6600 doi: 10.1039/C5NR08344C
[45]
Li X, Bi D Q, Yi C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294):58 doi: 10.1126/science.aaf8060
Fig. 1.  (Color online) (a) TGA curve of low-quality PbI2 powder, inset is the photo of the mixed suspension of low-quality 1M PbI2 and MAI with $1:1$ molar ratio in DMF. (b) XRD patterns of commercial high-quality and low-quality PbI2 powder. The star is indexed to the Pb(OH)2 and PbO impurity.

Fig. 2.  Color online) (a) XRD pattern and (b) UV-vis spectra of MAPbI3 films prepared from high-quality and low-quality PbI2 precursors. SEM images of MAPbI3 films from (c) high-quality and (d) low-quality PbI2. Scale bar is 500 nm.

Fig. 3.  (a) Typical J-V curves of perovskite solar cell fabricated from low and high-quality PbI2. (b) Stable output of the champion solar cell made from the low quality PbI2.

Table 1.   Photovoltaic parameters of the perovskite solar cells made from low and high quality PbI2, respectively.

Precursor typeJsc (mA/cm2)Voc(V)FF$\eta$ (%)
Low quality PbI$_2$20.62(20.31±1.02)1.04(1.03±0.02)0.69(0.67±0.03)14.80(14.19±0.89)
High quality PbI$_2$21.21(20.81±1.12)1.03(1.02±0.02)0.71(0.70±0.02)15.51(15.05±0.95)
DownLoad: CSV
[1]
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 2009, 131(17):6050 doi: 10.1021/ja809598r
[2]
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10):4088 doi: 10.1039/c1nr10867k
[3]
Bi D, Yang L, Boschloo G, et al. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskitesensitized mesoscopic solar cells. J Phys Chem Lett, 2013, 4(9):1532 doi: 10.1021/jz400638x
[4]
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458):316 doi: 10.1038/nature12340
[5]
Park N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J Phys Chem Lett, 2013, 4(15):2423 doi: 10.1021/jz400892a
[6]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52(15):9019 doi: 10.1021/ic401215x
[7]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156):341 doi: 10.1126/science.1243982
[8]
Zhao Y, Zhu K. Charge transport and recombination in perovskite (CH3NH3)PbI3 sensitized TiO2 solar cells. J Phys Chem Lett, 2013, 4(17):2880 doi: 10.1021/jz401527q
[9]
Mei A, Li X, Liu L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194):295 doi: 10.1126/science.1254763
[10]
Zhao Y, Zhu K. Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. J Am Chem Soc, 2014, 136(35):12241 doi: 10.1021/ja5071398
[11]
Dai X, Shi C, Zhang Y, et al. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J Semicond, 2015, 36(7):074003 doi: 10.1088/1674-4926/36/7/074003
[12]
Li G, Zhang T, Zhao Y. Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J Mater Chem A, 2015, 3(39):19674 doi: 10.1039/C5TA06172E
[13]
Nie W Y, Tsai H H, Asadpour R, et al. High-efficiency solutionprocessed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221):522 doi: 10.1126/science.aaa0472
[14]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240):1234 doi: 10.1126/science.aaa9272
[15]
Zhang T, Zhao Y. Recent progress of lead halide perovskite sensitized solar cells. Acta Chim Sinica, 2015, 73(3):202 doi: 10.6023/A14090656
[16]
Zhang T Y, Yang M J, Benson E E, et al. A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br1-xClx)3. Chem Commun, 2015, 51(37):7820 doi: 10.1039/C5CC01835H
[17]
Si F, Tang F, Xue H, et al. Effects of defect states on the performance of perovskite solar cells. J Semicond, 2016, 37(7):072003 doi: 10.1088/1674-4926/37/7/072003
[18]
Wu Y, Yang R, Tian H, et al. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J Semicond, 2016, 37(5):053002 doi: 10.1088/1674-4926/37/5/053002
[19]
You J, Meng L, Song T B, et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotech, 2016, 11(1):75 http://cn.bing.com/academic/profile?id=cfa525fe83a9f619904826ac20a799fb&encoded=0&v=paper_preview&mkt=zh-cn
[20]
Zhang J, Shi C, Chen J, et al. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J Semicond, 2016, 37(3):033002 doi: 10.1088/1674-4926/37/3/033002
[21]
Zhao Y X, Zhu K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem Soc Rev, 2016, 45(3):655 doi: 10.1039/C4CS00458B
[22]
Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells:X-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem Lett, 2014, 43(5):711 doi: 10.1246/cl.140074
[23]
Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[24]
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photon, 2014, 8(7):506 doi: 10.1038/nphoton.2014.134
[25]
Chen Y N, Zhao Y X, Liang Z Q. Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl. Chem Mater, 2015, 27(5):1448 doi: 10.1021/acs.chemmater.5b00041
[26]
Dar M I, Arora N, Gao P, et al. Investigation regarding the role of chloride in organic-inorganic halide perovskites obtained from chloride containing precursors. Nano Lett, 2014, 14(12): 6991 doi: 10.1021/nl503279x
[27]
Dar M I, Ramos F J, Xue Z, et al. Photoanode based on (001)-oriented anatase nanoplatelets for organic-inorganic lead iodide perovskite solar cell. Chem Mater, 2014, 26(16):4675 doi: 10.1021/cm502185s
[28]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107):643 doi: 10.1126/science.1228604
[29]
Li X, Dar M J, Yi C Y, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat Chem, 2015, 7(9):703 doi: 10.1038/nchem.2324
[30]
Lv S L, Pang S P, Zhou Y Y, et al. One-step, solution-processed formamidinium lead trihalide FAPbI3-xClx for mesoscopic perovskite-polymer solar cells. Phys Chem Chem Phys, 2014, 16(36):19206 doi: 10.1039/C4CP02113D
[31]
Qing J, Chandran H T, Cheng Y H, et al. Chlorine incorporation for enhanced performance of planar perovskite solar cell based on lead acetate precursor. ACS Appl Mater Interfaces, 2015, 7(41):23110 doi: 10.1021/acsami.5b06819
[32]
Wang D, Liu Z H, Zhou Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors. Chem Mater, 2014, 26(24):7145 doi: 10.1021/cm5037869
[33]
Wang Z W, Zhou Y Y, Pang S P, et al. Additive-modulated evolution of HC(NH2)(2)PbI3 black polymorph for mesoscopic perovskite solar cells. Chem Mater, 2015, 27(20):7149 doi: 10.1021/acs.chemmater.5b03169
[34]
Xu M, Rong Y, Ku Z, et al. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell. J Mater Chem A, 2014, 2(23):8607 doi: 10.1039/c4ta00379a
[35]
Yan K Y, Long M Z, Zhang T K, et al. Hybrid halide perovskite solar cell precursors:colloidal chemistry and coordination engineering behind device processing for high efficiency. J Am Chem Soc, 2015, 137(13):4460 doi: 10.1021/jacs.5b00321
[36]
Zhao Y, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118(18):9412 doi: 10.1021/jp502696w
[37]
Zhang T, Guo N, Li G, et al. A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26:50 doi: 10.1016/j.nanoen.2016.05.003
[38]
Bi D Q, El-Zohry A M, Hagfeldt A, et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics, 2015, 2(5):589 doi: 10.1021/ph500255t
[39]
Cao D H, Stoumpos C C, Malliakas C D, et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells. APL Mater, 2014, 2(9):091101 doi: 10.1063/1.4895038
[40]
Kim Y C, Jeon N J, Noh J H, et al. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv Energy Mater, 2016, 6(4):8
[41]
Lee Y H, Luo J S, Humphry-Baker R, et al. Unraveling the reasons for efficiency loss in perovskite solar cells. Adv Funct Mater, 2015, 25(25):3925 doi: 10.1002/adfm.v25.25
[42]
Liu F, Dong Q, Wong M K, et al. Is excess PbI2 beneficial for perovskite solar cell performance. Adv Energy Mater, 2016, 6(7):1502206 doi: 10.1002/aenm.201502206
[43]
Wang L, McCleese C, Kovalsky A, et al. Femtosecond timeresolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films:evidence for passivation effect of PbI2. J Am Chem Soc, 2014, 136(35):12205 doi: 10.1021/ja504632z
[44]
Wang S M, Dong W W, Fang X D, et al. Credible evidence for the passivation effect of remnant PbI2 in CH3NH3PbI3 films in improving the performance of perovskite solar cells. Nanoscale, 2016, 8(12):6600 doi: 10.1039/C5NR08344C
[45]
Li X, Bi D Q, Yi C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science, 2016, 353(6294):58 doi: 10.1126/science.aaf8060
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4558 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 18 July 2016 Revised: 07 August 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2[J]. Journal of Semiconductors, 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004 N J Guo, T Y Zhang, G Li, F Xu, X F Qian, Y X Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2[J]. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004.Export: BibTex EndNote
      Citation:
      Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2[J]. Journal of Semiconductors, 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

      N J Guo, T Y Zhang, G Li, F Xu, X F Qian, Y X Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2[J]. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004.
      Export: BibTex EndNote

      A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2

      doi: 10.1088/1674-4926/38/1/014004
      Funds:

      Project supported by the National Natural Science Foundation of China Nos. 51372151, 21303103

      and Houyingdong Grant No. 151046

      Project supported by the National Natural Science Foundation of China (Nos. 51372151, 21303103) and Houyingdong Grant (No. 151046).

      More Information
      • Corresponding author: Yixin Zhao,Email:yixin.zhao@sjtu.edu.cn
      • Received Date: 2016-07-18
      • Revised Date: 2016-08-07
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return