SEMICONDUCTOR TECHNOLOGY

Research on a processing model of CMP 6H-SiC (0001) single crystal wafer

Peng Zhang, Xianying Feng and Jingfang Yang

+ Author Affiliations

 Corresponding author: Feng Xianying, Email:fxying@sdu.edu.cn

PDF

Abstract: Firstly, this paper presents an orthogonal test of six factors and five levels, called the chemical mechanical polishing (CMP) process parameters experiment, for determining the best process parameters and ranking the influencing factors from primary to secondary. The three most important factors are the polishing pressure, the polishing liquid concentration and the relative velocity ratio of polishing disk to polishing carrier. Then, based on this analysis, the three factors and three levels of the quadratic orthogonal regression test are put forward. A mathematical model impacting the surface roughness has also been set up. Finally, this work has achieved a polished wafer, whose material removal rate (MRR) is in the range of 70-90 nm/h and the surface roughness (Ra) is between 0.3 nm and 0.5 nm.

Key words: CMPSiC single crystal waferprocess parametersorthogonal test design



[1]
Su Jianxiu, Du Jiaxi, Ma Lijie, et al. Material removal rate of 6H-SiC crystal substrate CMP using an alumina (Al2O3) abrasive. Journal of Semiconductors, 2012, 33:106003 doi: 10.1088/1674-4926/33/10/106003
[2]
Lee H, Park B, Jeong S, et al. The effect of mixed abrasive slurry on CMP of 6H-SiC substrates. Journal of Ceramic Processing Research, 2009, 10:378
[3]
Chen Xiufang, Li Juan, Ma Deying, et al. Fine machining of large-diameter 6H-SiC wafers. J Mater Sci Technol, 2006, 22:681 http://www.cnki.com.cn/Article/CJFDTotal-CLKJ200605022.htm
[4]
Saddow S E, Schattner T E, Brown J, et al. Effects of substrate surface preparation on chemical vapor deposition growth of 4H-SiC epitaxial layers. J Electron Mater, 2001, 30(3):228 doi: 10.1007/s11664-001-0021-3
[5]
Davis R F, Kelner G, Shur M, et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc IEEE, 1991, 79:677 doi: 10.1109/5.90132
[6]
Kato T, Wada K, Hozomi E, et al. High throughput SiC wafer polishing with good surface morphology. Mater Sci Forum, 2007, 556/557:753 https://www.scientific.net/MSF.556-557.753
[7]
Bukkapatnam S T S, Rao P K, Lih W C, et al. Process character-ization and statistical analysis. Appl Phys A, 2007, 88:785 doi: 10.1007/s00339-007-4082-x
[8]
Everson W J, Snyder D, Heydemann V D. Polishing and surface characterization of SiC substrates. Mater Sci Forum, 2000, 338-342:837 doi: 10.4028/www.scientific.net/MSF.338-342
[9]
Qian W, Skowronski M, Augustine G, et al. Characterization of polishing-related surface damage in (0001) silicon carbide substrates. J Electrochem Soc, 1995, 142:4290 doi: 10.1149/1.2048499
[10]
Song Xiaolan, Liu Hongyan, Yang Haiping, et al. Chemical mechanical polishing removal rate and mechanism of semiconductor silicon with nano-SiO2 slurries. Journal of the Chinese Ceramic Society, 2008, 36:1187 http://en.cnki.com.cn/Article_en/CJFDTotal-GXYB200808034.htm
[11]
Neslen C L, Mitchel W C, Hengehold R L. Effects of process parameter variations on the removal rate in chemical mechanical polishing of 4H-SiC. J Electron Mater, 2001, 30:1271 doi: 10.1007/s11664-001-0111-2
[12]
An J H, Lee G S, Lee W J, et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC (0001). J Mater Sci Forum, 2009, 600-603:831 doi: 10.4028/www.scientific.net/MSF.600-603
[13]
Pan Guoshun, Zhou Yan, Luo Guihai, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface. J Mater Sci:Mater Electron, 2013, 42:1 doi: 10.1007/s11664-012-2243-y
[14]
Li Juan, Chen Xiufang, Ma Deying, et al. High-precision processing of silicon carbide. Journal of Functional Materials, 2006, 01:70 https://www.researchgate.net/publication/287675974_High-precision_processing_of_silicon_carbide
[15]
Zhu Z, Muratov V, Fischer T E. Tribochemical polishing of silicon carbide in oxidant solution. Wear, 1999, 225-229:848 doi: 10.1016/S0043-1648(98)00392-5
[16]
Li J, Liu Y, Lu X, et al. Material removal mechanism of copper CMP from a chemical-mechanical synergy perspective. Tribol Lett, 2013, 49:11 doi: 10.1007/s11249-012-0037-2
[17]
Eryu O, Abe K, Takemoto N. Nanostructure formation of SiC using ion implantation and CMP. Nuclear Instruments and Methods in Physics Research, 2006, 242:237 doi: 10.1016/j.nimb.2005.08.029
[18]
Wang Haopeng, Feng Xianying, Li Li. Research on hot-air drying and control model for dry basis moisture content of seed cotton. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29:2 https://dl.sciencesocieties.org/publications/tcsae/abstracts/2013/3/2013.3.035
Fig. 1.  Structural schematic of CMP. 1—Polishing Disk; 2—Polishing Pad; 3—Polishing Pad Dresser; 4—Polishing Slurry Supply System; 5—Downforce; 6—Polishing Carrier; 7—Ceramic Sheet; 8—Paraffin; 9—Silicon Carbide Single Crystal Wafer; 10—Abrasives.

Fig. 2.  Trend graph of orthogonal test of CMP.

Fig. 3.  Influence of the wafer Ra of the CMP process parameters.

Fig. 4.  Influence of test factors on Ra.

Table 1.   Test factors and design levels.

Table 2.   Six factors and five orthogonal test levels design and results.

Table 3.   Factors and coding levels.

Table 4.   Three factors and three levels of quadratic orthogonal rotary regression test.

Table 5.   Results and variance analysis.

Table 6.   Verification of test results.

[1]
Su Jianxiu, Du Jiaxi, Ma Lijie, et al. Material removal rate of 6H-SiC crystal substrate CMP using an alumina (Al2O3) abrasive. Journal of Semiconductors, 2012, 33:106003 doi: 10.1088/1674-4926/33/10/106003
[2]
Lee H, Park B, Jeong S, et al. The effect of mixed abrasive slurry on CMP of 6H-SiC substrates. Journal of Ceramic Processing Research, 2009, 10:378
[3]
Chen Xiufang, Li Juan, Ma Deying, et al. Fine machining of large-diameter 6H-SiC wafers. J Mater Sci Technol, 2006, 22:681 http://www.cnki.com.cn/Article/CJFDTotal-CLKJ200605022.htm
[4]
Saddow S E, Schattner T E, Brown J, et al. Effects of substrate surface preparation on chemical vapor deposition growth of 4H-SiC epitaxial layers. J Electron Mater, 2001, 30(3):228 doi: 10.1007/s11664-001-0021-3
[5]
Davis R F, Kelner G, Shur M, et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc IEEE, 1991, 79:677 doi: 10.1109/5.90132
[6]
Kato T, Wada K, Hozomi E, et al. High throughput SiC wafer polishing with good surface morphology. Mater Sci Forum, 2007, 556/557:753 https://www.scientific.net/MSF.556-557.753
[7]
Bukkapatnam S T S, Rao P K, Lih W C, et al. Process character-ization and statistical analysis. Appl Phys A, 2007, 88:785 doi: 10.1007/s00339-007-4082-x
[8]
Everson W J, Snyder D, Heydemann V D. Polishing and surface characterization of SiC substrates. Mater Sci Forum, 2000, 338-342:837 doi: 10.4028/www.scientific.net/MSF.338-342
[9]
Qian W, Skowronski M, Augustine G, et al. Characterization of polishing-related surface damage in (0001) silicon carbide substrates. J Electrochem Soc, 1995, 142:4290 doi: 10.1149/1.2048499
[10]
Song Xiaolan, Liu Hongyan, Yang Haiping, et al. Chemical mechanical polishing removal rate and mechanism of semiconductor silicon with nano-SiO2 slurries. Journal of the Chinese Ceramic Society, 2008, 36:1187 http://en.cnki.com.cn/Article_en/CJFDTotal-GXYB200808034.htm
[11]
Neslen C L, Mitchel W C, Hengehold R L. Effects of process parameter variations on the removal rate in chemical mechanical polishing of 4H-SiC. J Electron Mater, 2001, 30:1271 doi: 10.1007/s11664-001-0111-2
[12]
An J H, Lee G S, Lee W J, et al. Effect of process parameters on material removal rate in chemical mechanical polishing of 6H-SiC (0001). J Mater Sci Forum, 2009, 600-603:831 doi: 10.4028/www.scientific.net/MSF.600-603
[13]
Pan Guoshun, Zhou Yan, Luo Guihai, et al. Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface. J Mater Sci:Mater Electron, 2013, 42:1 doi: 10.1007/s11664-012-2243-y
[14]
Li Juan, Chen Xiufang, Ma Deying, et al. High-precision processing of silicon carbide. Journal of Functional Materials, 2006, 01:70 https://www.researchgate.net/publication/287675974_High-precision_processing_of_silicon_carbide
[15]
Zhu Z, Muratov V, Fischer T E. Tribochemical polishing of silicon carbide in oxidant solution. Wear, 1999, 225-229:848 doi: 10.1016/S0043-1648(98)00392-5
[16]
Li J, Liu Y, Lu X, et al. Material removal mechanism of copper CMP from a chemical-mechanical synergy perspective. Tribol Lett, 2013, 49:11 doi: 10.1007/s11249-012-0037-2
[17]
Eryu O, Abe K, Takemoto N. Nanostructure formation of SiC using ion implantation and CMP. Nuclear Instruments and Methods in Physics Research, 2006, 242:237 doi: 10.1016/j.nimb.2005.08.029
[18]
Wang Haopeng, Feng Xianying, Li Li. Research on hot-air drying and control model for dry basis moisture content of seed cotton. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29:2 https://dl.sciencesocieties.org/publications/tcsae/abstracts/2013/3/2013.3.035
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2349 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 25 November 2013 Revised: 15 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Peng Zhang, Xianying Feng, Jingfang Yang. Research on a processing model of CMP 6H-SiC (0001) single crystal wafer[J]. Journal of Semiconductors, 2014, 35(9): 096002. doi: 10.1088/1674-4926/35/9/096002 P Zhang, X Y Feng, J F Yang. Research on a processing model of CMP 6H-SiC (0001) single crystal wafer[J]. J. Semicond., 2014, 35(9): 096002. doi: 10.1088/1674-4926/35/9/096002.Export: BibTex EndNote
      Citation:
      Peng Zhang, Xianying Feng, Jingfang Yang. Research on a processing model of CMP 6H-SiC (0001) single crystal wafer[J]. Journal of Semiconductors, 2014, 35(9): 096002. doi: 10.1088/1674-4926/35/9/096002

      P Zhang, X Y Feng, J F Yang. Research on a processing model of CMP 6H-SiC (0001) single crystal wafer[J]. J. Semicond., 2014, 35(9): 096002. doi: 10.1088/1674-4926/35/9/096002.
      Export: BibTex EndNote

      Research on a processing model of CMP 6H-SiC (0001) single crystal wafer

      doi: 10.1088/1674-4926/35/9/096002
      Funds:

      the National Natural Science Foundation of China 51375266

      Project supported by the National Natural Science Foundation of China (No. 51375266)

      More Information
      • Corresponding author: Feng Xianying, Email:fxying@sdu.edu.cn
      • Received Date: 2013-11-25
      • Revised Date: 2014-03-15
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return