SEMICONDUCTOR INTEGRATED CIRCUITS

Millimeter wave band ultra wideband transmitter MMIC

Ling Jin1 and Nathalie Rolland2

+ Author Affiliations

 Corresponding author: Jin Ling, jinlingtt@msn.com

PDF

Abstract: This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

Key words: millimeter-waveultra wideband transmitternegative resistance oscillatorMMICGaAs pHEMT



[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
Fig. 1.  MMW UWB transmitter architecture based on an RF switch.

Fig. 2.  MMW UWB transmitter architecture based on an UWB modulated oscillator.

Fig. 3.  MMW UWB transmitter architecture.

Fig. 4.  Electrical schematic of MMW UWB transmitter.

Fig. 5.  Die photography of the MMW UWB transmitter (0.8 $\times $ 1.9~mm$^{2})$.

Fig. 6.  Negative resistance model.

Fig. 7.  ADS OscTest loop magnitude simulation result of NRO.

Fig. 8.  ADS OscTest loop phase simulation result of NRO.

Fig. 9.  ADS OscPort simulation result of the transmitter.

Fig. 10.  UWB pulse generator architecture.

Fig. 11.  Gain,$P_{\rm out}$ versus $P_{\rm in}$ @ 27 GHz.

Fig. 12.  ADS transient simulation result of MMW UWB transmitter.

Fig. 13.  Time domain output results of MMW UWB transmitter. (200 mV/div; 100 ps/div).

Fig. 14.  Spectrum result of the MMW UWB transmitter.

Fig. 15.  ADS OscPort post-simulation result of the transmitter.

DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV
DownLoad: CSV

Table 1.   Summary of simulation and measurement results of MMIC.

DownLoad: CSV

Table 2.   Summary of two MMW UWB transmitters using GaAs process.

DownLoad: CSV
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2635 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 04 May 2015 Revised: Online: Published: 01 September 2015

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ling Jin, Nathalie Rolland. Millimeter wave band ultra wideband transmitter MMIC[J]. Journal of Semiconductors, 2015, 36(9): 095005. doi: 10.1088/1674-4926/36/9/095005 L Jin, N Roll. Millimeter wave band ultra wideband transmitter MMIC[J]. J. Semicond., 2015, 36(9): 095005. doi: 10.1088/1674-4926/36/9/095005.Export: BibTex EndNote
      Citation:
      Ling Jin, Nathalie Rolland. Millimeter wave band ultra wideband transmitter MMIC[J]. Journal of Semiconductors, 2015, 36(9): 095005. doi: 10.1088/1674-4926/36/9/095005

      L Jin, N Roll. Millimeter wave band ultra wideband transmitter MMIC[J]. J. Semicond., 2015, 36(9): 095005. doi: 10.1088/1674-4926/36/9/095005.
      Export: BibTex EndNote

      Millimeter wave band ultra wideband transmitter MMIC

      doi: 10.1088/1674-4926/36/9/095005
      Funds:

      More Information
      • Corresponding author: Jin Ling, jinlingtt@msn.com
      • Received Date: 2015-05-04
      • Accepted Date: 2015-06-09
      • Published Date: 2015-01-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return