SEMICONDUCTOR DEVICES

Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors

Jie Wu1, Junfei Shi1, Chengyuan Dong1, , Zhongfei Zou2, Yuting Chen1, Daxiang Zhou1, Zhe Hu1 and Runze Zhan1

+ Author Affiliations

 Corresponding author: Dong Chengyuan, Email:cydong@sjtu.edu.cn

PDF

Abstract: The effect of active layer deposition temperature on the electrical performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFTs) is investigated. With increasing annealing temperature, TFT performance is firstly improved and then degraded generally. Here TFTs with best performance defined as "optimized-annealed" are selected to study the effect of active layer deposition temperature. The field effect mobility reaches maximum at deposition temperature of 150℃ while the room-temperature fabricated device shows the best subthreshold swing and off-current. From Hall measurement results, the carrier concentration is much higher for intentional heated a-IGZO films, which may account for the high off-current in the corresponding TFT devices. XPS characterization results also reveal that deposition temperature affects the atomic ratio and O1s spectra apparently. Importantly, the variation of field effect mobility of a-IGZO TFTs with deposition temperature does not coincide with the tendencies in Hall mobility of a-IGZO thin films. Based on the further analysis of the experimental results on a-IGZO thin films and the corresponding TFT devices, the trap states at front channel interface rather than IGZO bulk layer properties may be mainly responsible for the variations of field effect mobility and subthreshold swing with IGZO deposition temperature.

Key words: thin film transistorsamorphous oxide semiconductorsmagnetron sputteringdeposition temperature



[1]
Takagi A, Nomura K, Ohta H, et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films, 2005, 486(1/2):38
[2]
Hosono H, Kim S, Miyakawa M, et al. Thin film and bulk fabrication of room-temperature-stable electrode C12A7: e- utilizing reduced amorphous 12CaO· 7Al2O3(C12A7). J Non-Cryst Solids, 2008, 354(19-25): 2772
[3]
Chiang H Q, Wager J F, Hoffman R L, et al. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl Phys Lett, 2005, 86(1):013503 doi: 10.1063/1.1843286
[4]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature (London), 2004, 432(7016):488 doi: 10.1038/nature03090
[5]
Kim G H, Shin H S, Ahn B D, et al. Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor. J Electrochem Soc, 2009, 156(1):H7
[6]
Kim G H, Kim H S, Shin H S, et al. Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 2009, 517(14):4007 doi: 10.1016/j.tsf.2009.01.151
[7]
Shi J F, Dong C Y, Dai W J, et al. Influence of RF power on electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. Journal of Semiconductors, 2013, 34(8):084003 doi: 10.1088/1674-4926/34/8/084003
[8]
Nomura K, Kamiya T, Ohta H, et al. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Appl Phys Lett, 2008, 93(19):192107 doi: 10.1063/1.3020714
[9]
Hsieh H H, Kamiya T, Nomura K, et al. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Appl Phys Lett, 2008, 92(13):133503 doi: 10.1063/1.2857463
[10]
Nomura K, Kamiya T, Yanagi H, et al. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy. Appl Phys Lett, 2008, 92(20):202117 doi: 10.1063/1.2927306
[11]
Hirata A, Morino T, Hirotsu Y, et al. Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction. Mater Trans, 2007, 48(06):1299 doi: 10.2320/matertrans.MF200618
[12]
Singh S, Srinivasa R S, Major S S. Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering. Thin Solid Films, 2007, 515(24):8718 doi: 10.1016/j.tsf.2007.03.168
[13]
Moon M R, Na S, Jeon H, et al. Effects of substrate heating on the amorphous structure of InGaZnO films and the electrical properties of their thin film transistors. Appl Phys Express, 2010, 3(11):111101 doi: 10.1143/APEX.3.111101
[14]
Ahn B D, Shin H S, Kim D L, et al. Origin of device performance degradation in InGaZnO thin-film transistors after crystallization. Jpn J Appl Phys, 2012, 51(1):015601 doi: 10.1143/JJAP.51.015601
[15]
Trinh T T, Nguyen V D, Ryu K, et al. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer. Semicond Sci Technol, 2011, 26(8):085012 doi: 10.1088/0268-1242/26/8/085012
[16]
Iwasaki T, Itagaki N, Den T, et al. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels:an application to amorphous oxide semiconductors in In-Ga-Zn-O system. Appl Phys Lett, 2007, 90(24):242114 doi: 10.1063/1.2749177
[17]
Kim K H, Kim G H, Kim H J. Multi-band theory of magnetoexcitons in ZnO/ZnMnO quantum wells. Phys Status Solidi, 2010, 7(6):1660
[18]
Chen M C, Chang T C, Huang S Y, et al. Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory. Electro-Chem Solid-State Lett, 2010, 13(6):H191
[19]
Nomura K, Kamiya T, Ohta H, et al. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In-Ga-Zn-O. Phys Status Solidi A, 2008, 205(8):1910 doi: 10.1002/pssa.v205:8
[20]
Rolland A, Richard J, Kleider J P, et al. Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations. J Electrochem Soc, 1993, 140(12):3679 doi: 10.1149/1.2221149
Fig. 1.  Transfer curves of TFTs fabricated at IGZO deposition temperature of (a) RT, (b) 150 , (c) 200 , (d) 250 , and (e) 300 , where the data were measured at a fixed drain voltage of 5 V. (f) The corresponding optimized-annealing temperature for various active layer deposition temperature.

Fig. 2.  Variation of (a) field-effect mobility and subthreshold swing and (b) on-current and off-current of a-IGZO TFTs with respect to active layer deposition temperature.

Fig. 3.  XRD patterns of the a-IGZO thin films fabricated at various temperature.

Fig. 4.  Surface roughness of a-IGZO thin films at various deposition temperatures obtained from AFM measurement.

Fig. 5.  Resistivity, carrier concentration and Hall mobility of the as-deposited and optimized-annealed a-IGZO thin films at various deposition temperature, obtained from Hall measurements.

Fig. 6.  (a) Atomic ratio of In, Ga, Zn and O in a-IGZO thin films with various deposition temperatures. (b) Atomic ratio of oxygen in as-deposited and optimized-annealed a-IGZO thin films. XPS O 1s spectra of a-IGZO films with various deposition temperatures for the samples (c) in as-deposition and (d) after optimized annealing.

[1]
Takagi A, Nomura K, Ohta H, et al. Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films, 2005, 486(1/2):38
[2]
Hosono H, Kim S, Miyakawa M, et al. Thin film and bulk fabrication of room-temperature-stable electrode C12A7: e- utilizing reduced amorphous 12CaO· 7Al2O3(C12A7). J Non-Cryst Solids, 2008, 354(19-25): 2772
[3]
Chiang H Q, Wager J F, Hoffman R L, et al. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl Phys Lett, 2005, 86(1):013503 doi: 10.1063/1.1843286
[4]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature (London), 2004, 432(7016):488 doi: 10.1038/nature03090
[5]
Kim G H, Shin H S, Ahn B D, et al. Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor. J Electrochem Soc, 2009, 156(1):H7
[6]
Kim G H, Kim H S, Shin H S, et al. Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 2009, 517(14):4007 doi: 10.1016/j.tsf.2009.01.151
[7]
Shi J F, Dong C Y, Dai W J, et al. Influence of RF power on electrical properties of sputtered amorphous In-Ga-Zn-O thin films and devices. Journal of Semiconductors, 2013, 34(8):084003 doi: 10.1088/1674-4926/34/8/084003
[8]
Nomura K, Kamiya T, Ohta H, et al. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Appl Phys Lett, 2008, 93(19):192107 doi: 10.1063/1.3020714
[9]
Hsieh H H, Kamiya T, Nomura K, et al. Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states. Appl Phys Lett, 2008, 92(13):133503 doi: 10.1063/1.2857463
[10]
Nomura K, Kamiya T, Yanagi H, et al. Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy. Appl Phys Lett, 2008, 92(20):202117 doi: 10.1063/1.2927306
[11]
Hirata A, Morino T, Hirotsu Y, et al. Local atomic structure analysis of Zr-Ni and Zr-Cu metallic glasses using electron diffraction. Mater Trans, 2007, 48(06):1299 doi: 10.2320/matertrans.MF200618
[12]
Singh S, Srinivasa R S, Major S S. Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering. Thin Solid Films, 2007, 515(24):8718 doi: 10.1016/j.tsf.2007.03.168
[13]
Moon M R, Na S, Jeon H, et al. Effects of substrate heating on the amorphous structure of InGaZnO films and the electrical properties of their thin film transistors. Appl Phys Express, 2010, 3(11):111101 doi: 10.1143/APEX.3.111101
[14]
Ahn B D, Shin H S, Kim D L, et al. Origin of device performance degradation in InGaZnO thin-film transistors after crystallization. Jpn J Appl Phys, 2012, 51(1):015601 doi: 10.1143/JJAP.51.015601
[15]
Trinh T T, Nguyen V D, Ryu K, et al. Improvement in the performance of an InGaZnO thin-film transistor by controlling interface trap densities between the insulator and active layer. Semicond Sci Technol, 2011, 26(8):085012 doi: 10.1088/0268-1242/26/8/085012
[16]
Iwasaki T, Itagaki N, Den T, et al. Combinatorial approach to thin-film transistors using multicomponent semiconductor channels:an application to amorphous oxide semiconductors in In-Ga-Zn-O system. Appl Phys Lett, 2007, 90(24):242114 doi: 10.1063/1.2749177
[17]
Kim K H, Kim G H, Kim H J. Multi-band theory of magnetoexcitons in ZnO/ZnMnO quantum wells. Phys Status Solidi, 2010, 7(6):1660
[18]
Chen M C, Chang T C, Huang S Y, et al. Bipolar resistive switching characteristics of transparent indium gallium zinc oxide resistive random access memory. Electro-Chem Solid-State Lett, 2010, 13(6):H191
[19]
Nomura K, Kamiya T, Ohta H, et al. Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In-Ga-Zn-O. Phys Status Solidi A, 2008, 205(8):1910 doi: 10.1002/pssa.v205:8
[20]
Rolland A, Richard J, Kleider J P, et al. Electrical properties of amorphous silicon transistors and MIS-devices:comparative study of top nitride and bottom nitride configurations. J Electrochem Soc, 1993, 140(12):3679 doi: 10.1149/1.2221149
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3190 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: 17 June 2013 Revised: 29 July 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors[J]. Journal of Semiconductors, 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003 J Wu, J F Shi, C Y Dong, Z F Zou, Y T Chen, D X Zhou, Z Hu, R Z Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors[J]. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003.Export: BibTex EndNote
      Citation:
      Jie Wu, Junfei Shi, Chengyuan Dong, Zhongfei Zou, Yuting Chen, Daxiang Zhou, Zhe Hu, Runze Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors[J]. Journal of Semiconductors, 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003

      J Wu, J F Shi, C Y Dong, Z F Zou, Y T Chen, D X Zhou, Z Hu, R Z Zhan. Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors[J]. J. Semicond., 2014, 35(1): 014003. doi: 10.1088/1674-4926/35/1/014003.
      Export: BibTex EndNote

      Effect of active layer deposition temperature on the performance of sputtered amorphous In-Ga-Zn-O thin film transistors

      doi: 10.1088/1674-4926/35/1/014003
      Funds:

      Project supported by the State Key Development Program for Basic Research of China (No. 2013CB328803) and the National Natural Science Foundation of China (No. 61136004)

      the State Key Development Program for Basic Research of China 2013CB328803

      the National Natural Science Foundation of China 61136004

      More Information
      • Corresponding author: Dong Chengyuan, Email:cydong@sjtu.edu.cn
      • Received Date: 2013-06-17
      • Revised Date: 2013-07-29
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return