REVIEWS

Recent progress in 2D group-V elemental monolayers: fabrications and properties

Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao and Yeliang Wang

+ Author Affiliations

 Corresponding author: Liwei Liu, E-mail: liwei.liu@bit.edu.cn

PDF

Turn off MathJax

Abstract: A large number of two-dimensional (2D) monoelemental materials with huge application potentials have been developed, since graphene was reported as a monoelemental material with unique properties. As cousins of graphene, 2D group-V elemental monolayers have gained tremendous interest due to their electronic properties with significant fundamental bandgap. In this review, we extensively summarize the latest theoretical and experimental progress in group-V monoelemental materials, including the latest fabrication methods, the properties and potential applications of these 2D monoelementals. We also give a perspective of the challenges and opportunities of 2D monoelemental group-V monolayer materials and related functional nanodevices.

Key words: 2D materialsgroup-V monolayerphosphorenearseneneantimonenebismuthene



[1]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9, 768 doi: 10.1038/nnano.2014.207
[2]
Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439 doi: 10.1126/science.aac9439
[3]
Li G, Zhang Y Y, Guo H, et al. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem Soc Rev, 2018, 47, 6073 doi: 10.1039/C8CS00286J
[4]
Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408 doi: 10.1038/s41565-019-0438-6
[5]
Cheng J B, Wang C L, Zou X M, et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv Opt Mater, 2019, 7, 1800441 doi: 10.1002/adom.201800441
[6]
Epstein I, Chaves A J, Rhodes D A, et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater, 2020, 7, 035031 doi: 10.1088/2053-1583/ab8dd4
[7]
Kou J, Nguyen E P, Merkoçi A, et al. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater, 2020, 7, 032001 doi: 10.1088/2053-1583/ab896a
[8]
Lin X, Lu J C, Shao Y, et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat Mater, 2017, 16, 717 doi: 10.1038/nmat4915
[9]
Niu X H, Yi Y W, Meng L J, et al. Two-dimensional phosphorene, arsenene, and antimonene quantum dots: Anomalous size-dependent behaviors of optical properties. J Phys Chem C, 2019, 123, 25775 doi: 10.1021/acs.jpcc.9b04968
[10]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9, 111 doi: 10.1038/nnano.2013.277
[11]
Das Sarma S, Adam S, Hwang E H, et al. Electronic transport in two-dimensional graphene. Rev Mod Phys, 2011, 83, 407 doi: 10.1103/RevModPhys.83.407
[12]
Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107, 076802 doi: 10.1103/PhysRevLett.107.076802
[13]
Wu Z H, Hao J H. Electrical transport properties in group-V elemental ultrathin 2D layers. npj 2D Mater Appl, 2020, 4, 4 doi: 10.1038/s41699-020-0139-x
[14]
Zhang S L, Guo S Y, Chen Z F, et al. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem Soc Rev, 2018, 47, 982 doi: 10.1039/C7CS00125H
[15]
Qin G Z, Qin Z Z. Negative Poisson's ratio in two-dimensional honeycomb structures. npj Comput Mater, 2020, 6, 51 doi: 10.1038/s41524-020-0313-x
[16]
Ma Y Q, Shen C F, Zhang A, et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano, 2017, 11, 7126 doi: 10.1021/acsnano.7b02858
[17]
Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14, 2884 doi: 10.1021/nl500935z
[18]
Liu Q, Zhang X W, Abdalla L, et al. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett, 2015, 15, 1222 doi: 10.1021/nl5043769
[19]
Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[20]
Phuong L T T, Phong T C, Yarmohammadi M. Spin-splitting effects on the interband optical conductivity and activity of phosphorene. Sci Rep, 2020, 10, 9201 doi: 10.1038/s41598-020-65951-9
[21]
Zhang S L, Yan Z, Li Y F, et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 2015, 54, 3112 doi: 10.1002/anie.201411246
[22]
Wada M, Murakami S, Freimuth F, et al. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys Rev B, 2011, 83, 121310 doi: 10.1103/PhysRevB.83.121310
[23]
Murakami S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett, 2006, 97, 236805 doi: 10.1103/PhysRevLett.97.236805
[24]
Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr, 1965, 19, 684 doi: 10.1107/S0365110X65004140
[25]
Thurn H, Kerbs H. Crystal structure of violet phosphorus. Angew Chem Int Ed, 1966, 5, 1047 doi: 10.1002/anie.196610473
[26]
Hultgren R, Gingrich N S, Warren B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys, 1935, 3, 351 doi: 10.1063/1.1749671
[27]
Appalakondaiah S, Vaitheeswaran G, Lebègue S, et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys Rev B, 2012, 86, 035105 doi: 10.1103/PhysRevB.86.035105
[28]
Fukuoka S, Taen T, Osada T. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J Phys Soc Jpn, 2015, 84, 121004 doi: 10.7566/JPSJ.84.121004
[29]
Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett, 2014, 14, 6400 doi: 10.1021/nl502892t
[30]
Kim J S, Jeon P J, Lee J, et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching. Nano Lett, 2015, 15, 5778 doi: 10.1021/acs.nanolett.5b01746
[31]
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14, 3347 doi: 10.1021/nl5008085
[32]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[33]
Baboukani A R, Khakpour I, Drozd V, et al. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application. J Mater Chem, 2019, 7, 25548 doi: 10.1039/C9TA09641H
[34]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033 doi: 10.1021/nn501226z
[35]
Xie J, Si M, Yang D, et al. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys, 2014, 116, 073704 doi: 10.1063/1.4893589
[36]
Aierken Y, Cakir D, Sevik C, et al. Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys Rev B, 2015, 92, 081408 doi: 10.1103/PhysRevB.92.081408
[37]
Ghosh B, Nahas S, Bhowmick S, et al. Electric field induced gap modification in ultrathin blue phosphorus. Phys Rev B, 2015, 91, 115433 doi: 10.1103/PhysRevB.91.115433
[38]
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 2014, 112, 176802 doi: 10.1103/PhysRevLett.112.176802
[39]
Zhang J L, Zhao S T, Han C, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 2016, 16, 4903 doi: 10.1021/acs.nanolett.6b01459
[40]
Wang C, You Y Z, Choi J H. First-principles study of defects in blue phosphorene. Mater Res Express, 2019, 7, 015005 doi: 10.1088/2053-1591/ab59fc
[41]
Wang Y P, Zhang C W, Ji W X, et al. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J Phys D, 2016, 49, 055305 doi: 10.1088/0022-3727/49/5/055305
[42]
Gusmão R, Sofer Z, Bouša D, et al. Innentitelbild: pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 2017, 129, 14510 doi: 10.1002/ange.201710278
[43]
Kamal C, Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 2015, 91, 085423 doi: 10.1103/PhysRevB.91.085423
[44]
Pizzi G, Gibertini M, Dib E, et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 2016, 7, 12585 doi: 10.1038/ncomms12585
[45]
Tsai H, Wang S, Hsiao C, et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater, 2016, 28, 425 doi: 10.1021/acs.chemmater.5b04949
[46]
Ares P, Aguilar-Galindo F, Rodríguez-San-miguel D, et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 2016, 28, 6332 doi: 10.1002/adma.201602128
[47]
Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun, 2016, 7, 13352 doi: 10.1038/ncomms13352
[48]
Wu X, Shao Y, Liu H, et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv Mater, 2017, 29, 1605407 doi: 10.1002/adma.201605407
[49]
Zhu S, Shao Y, Wang E, et al. Evidence of topological edge states in buckled antimonene monolayers. Nano Lett, 2019, 19, 6323 doi: 10.1021/acs.nanolett.9b02444
[50]
Shao Y, Liu Z L, Cheng C, et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett, 2018, 18, 2133 doi: 10.1021/acs.nanolett.8b00429
[51]
Zhao A D, Wang B. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater, 2020, 8, 030701 doi: 10.1063/1.5135984
[52]
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys Rev Lett, 2011, 107, 136805 doi: 10.1103/PhysRevLett.107.136805
[53]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357, 287 doi: 10.1126/science.aai8142
[54]
Stühler R, Reis F, Müller T, et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat Phys, 2020, 16, 47 doi: 10.1038/s41567-019-0697-z
Fig. 1.  (Color online) Group-V elements in the period table. Among group-V elements, phosphorus, arsenic, antimony and bismuth (highlighted by blue-frame) are contributed to the formation of 2D monolayer materials phosphorene, arsenene, antimonene and bismuthene, respectively.

Fig. 2.  (Color online) (a) The atomic structures of monolayer black phosphorus (BP). The unit cells are highlighted by the black rectangle. a1 and a2 represent the armchair edge and zigzag edge, respectively. (b, c) Electronic band dispersion of monolayer and five-layer BP, respectively. (d) Schematic illustration of preparing BP nanoparticles in water. (e) TEM image of BP nanosheets. (f) SEM images of exfoliated and deposited BP nanosheets. (g) The atomic structures of monolayer blue phosphorus. (h, i) Large-scale and high-resolution STM images of single layer phosphorus on Au(111), respectively. The unit cell in (i) is highlighted by yellow rhombus. (j, k) Calculated band structures of the perfect and spin-polarized SV-(5|9) defective blue phosphorene, respectively. (l) Spin density distribution for SV-(5|9). The yellow and blue colors represent the majority (positive) and the minority (negative) densities, respectively. (a, g–i) reproduced from Ref. [39] from American Chemical Society, copyright 2016; (b, c) reproduced from Ref. [28] from Scientific Citation Index, copyright 2015. (d–f) reproduced from Ref. [33] from Royal Society of Chemistry, copyright 2019. (j–l) reproduced from Ref. [40] from Scientific Citation Index, copyright 2020.

Fig. 3.  (Color online) (a) Top view and (b) side view of a buckled As monolayer (arsenene). (c) The band structures of arsenene with respect to external tensile strain, while the red section denotes the contribution of s-type orbital and the blue section means the contribution of p-type orbital. (d, e) Visual comparison between final product of the aqueous shear exfoliation process (AsSE) and starting materials (bulk arsenic). (f) TEM image of shear-exfoliated arsenic nanosheets. (a, b) reproduced from Ref. [21] from Wiley, copyright 2015; (c) reproduced from Ref. [41] from Institute of Physics Publishing, copyright 2016; (d–f) reproduced from Ref. [42] from Wiley, copyright 2017.

Fig. 4.  (Color online) (a) Schematic of fabrication process of buckled monolayer antimonene. (b) STM topographic image of large antimonene island on PdTe2. Inset: LEED pattern of antimonene on PdTe2. (c) Atomic resolution STM image of monolayer antimonene. (d) Top view (upper) and side view (lower) of the buckled antimonene. (e) A height profile, showing that the apparent height of the antimonene island. (f) Top view of the overall electron localization function (ELF) of the relaxed model, showing the continuity of the monolayer antimonene. (g) ELF of the cross section, demonstrating high localization of the electrons in Sb–Sb pairs. Typical STM image of antimonene islands on PdTe2 substrate before air exposure in (h), after exposing to air for 20 min in (i), and after 380 K annealing in (j), respectively. Reproduced from Ref. [46]. Copyright 2017, Wiley.

Fig. 5.  (Color online) (a) Atomic structure and s, p-orbital projected band structure of buckled antimonene in (a) and flat antimonene in (b), in which the shade circles denote the Dirac cone from the out-of-plane pz orbitals. (c) Schematic of fabrication process of flat antimonene. LEED pattern of a clean Ag(111) substrate in (d) and antimonene film on Ag(111) in (e). (f) Large scale STM image of monolayer antimonene on the Ag(111). Inset: A height profile along the line at the terrace edge. (g) High-resolution STM image of antimonene. (h) Line profile revealing the periodicity of the antimonene lattice (5.01 Å). (i) A typical STM image of antimonene island on Ag(111). (j) The apparent height of the island. (k) Top view of the overall electron localization function (ELF) of the relaxed model of FAM. (l) Cross-sectional ELF along the black-dashed line in (k). Reproduced from Ref. [50] from American Chemical Society, copyright 2018.

Fig. 6.  (Color online) (a) LEED pattern of the SiC(0001)-H substrate, an unreconstructed (1 × 1) surface results from the hydrogenation of the top-layer Si dangling bonds. (b) After Bi deposition, ($ \sqrt{3} $ × $ \sqrt{3} $) R30° spots (red arrows) appears, indicating the formation of monolayer bismuthene on the surface. (c) Sketch of a bismuthene layer placed on the SiC(0001) substrate. (d) Topographic STM overview map showing that bismuthene fully covers the substrate. (e) The contribution of Bi s and p orbitals to the electronic structure of bismuthene (without SOC). (f) Electronic structure of the low-energy effective model without SOC. (g) Inclusion of the strong atomic SOC opens a huge gap at the K point. (h) Further including the Rashba term lifts the degeneracy of the topmost valence band and induces a large splitting with opposite spin character there. (i) Spatially resolved dI/dV data across the same step. The dI/dV signal of the in-gap states peaks at both film edges (gray dashed lines mark dI/dV maxima). (j) Topographic z(x) line profile of the step and dI/dV signal of bismuthene (integrated over the gap from +0.15 to +0.55 eV), showing an exponential decrease away from the step edge, on either side. Reproduced from Ref. [53]. Copyright 2017, American Association for the Advancement of Science.

[1]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol, 2014, 9, 768 doi: 10.1038/nnano.2014.207
[2]
Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353, aac9439 doi: 10.1126/science.aac9439
[3]
Li G, Zhang Y Y, Guo H, et al. Epitaxial growth and physical properties of 2D materials beyond graphene: From monatomic materials to binary compounds. Chem Soc Rev, 2018, 47, 6073 doi: 10.1039/C8CS00286J
[4]
Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures. Nat Nanotechnol, 2019, 14, 408 doi: 10.1038/s41565-019-0438-6
[5]
Cheng J B, Wang C L, Zou X M, et al. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv Opt Mater, 2019, 7, 1800441 doi: 10.1002/adom.201800441
[6]
Epstein I, Chaves A J, Rhodes D A, et al. Highly confined in-plane propagating exciton-polaritons on monolayer semiconductors. 2D Mater, 2020, 7, 035031 doi: 10.1088/2053-1583/ab8dd4
[7]
Kou J, Nguyen E P, Merkoçi A, et al. 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater, 2020, 7, 032001 doi: 10.1088/2053-1583/ab896a
[8]
Lin X, Lu J C, Shao Y, et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat Mater, 2017, 16, 717 doi: 10.1038/nmat4915
[9]
Niu X H, Yi Y W, Meng L J, et al. Two-dimensional phosphorene, arsenene, and antimonene quantum dots: Anomalous size-dependent behaviors of optical properties. J Phys Chem C, 2019, 123, 25775 doi: 10.1021/acs.jpcc.9b04968
[10]
Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat Nanotechnol, 2014, 9, 111 doi: 10.1038/nnano.2013.277
[11]
Das Sarma S, Adam S, Hwang E H, et al. Electronic transport in two-dimensional graphene. Rev Mod Phys, 2011, 83, 407 doi: 10.1103/RevModPhys.83.407
[12]
Liu C C, Feng W X, Yao Y G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys Rev Lett, 2011, 107, 076802 doi: 10.1103/PhysRevLett.107.076802
[13]
Wu Z H, Hao J H. Electrical transport properties in group-V elemental ultrathin 2D layers. npj 2D Mater Appl, 2020, 4, 4 doi: 10.1038/s41699-020-0139-x
[14]
Zhang S L, Guo S Y, Chen Z F, et al. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem Soc Rev, 2018, 47, 982 doi: 10.1039/C7CS00125H
[15]
Qin G Z, Qin Z Z. Negative Poisson's ratio in two-dimensional honeycomb structures. npj Comput Mater, 2020, 6, 51 doi: 10.1038/s41524-020-0313-x
[16]
Ma Y Q, Shen C F, Zhang A, et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano, 2017, 11, 7126 doi: 10.1021/acsnano.7b02858
[17]
Fei R X, Yang L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett, 2014, 14, 2884 doi: 10.1021/nl500935z
[18]
Liu Q, Zhang X W, Abdalla L, et al. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett, 2015, 15, 1222 doi: 10.1021/nl5043769
[19]
Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[20]
Phuong L T T, Phong T C, Yarmohammadi M. Spin-splitting effects on the interband optical conductivity and activity of phosphorene. Sci Rep, 2020, 10, 9201 doi: 10.1038/s41598-020-65951-9
[21]
Zhang S L, Yan Z, Li Y F, et al. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew Chem Int Ed, 2015, 54, 3112 doi: 10.1002/anie.201411246
[22]
Wada M, Murakami S, Freimuth F, et al. Localized edge states in two-dimensional topological insulators: Ultrathin Bi films. Phys Rev B, 2011, 83, 121310 doi: 10.1103/PhysRevB.83.121310
[23]
Murakami S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys Rev Lett, 2006, 97, 236805 doi: 10.1103/PhysRevLett.97.236805
[24]
Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr, 1965, 19, 684 doi: 10.1107/S0365110X65004140
[25]
Thurn H, Kerbs H. Crystal structure of violet phosphorus. Angew Chem Int Ed, 1966, 5, 1047 doi: 10.1002/anie.196610473
[26]
Hultgren R, Gingrich N S, Warren B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J Chem Phys, 1935, 3, 351 doi: 10.1063/1.1749671
[27]
Appalakondaiah S, Vaitheeswaran G, Lebègue S, et al. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys Rev B, 2012, 86, 035105 doi: 10.1103/PhysRevB.86.035105
[28]
Fukuoka S, Taen T, Osada T. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J Phys Soc Jpn, 2015, 84, 121004 doi: 10.7566/JPSJ.84.121004
[29]
Liang L B, Wang J, Lin W Z, et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett, 2014, 14, 6400 doi: 10.1021/nl502892t
[30]
Kim J S, Jeon P J, Lee J, et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching. Nano Lett, 2015, 15, 5778 doi: 10.1021/acs.nanolett.5b01746
[31]
Buscema M, Groenendijk D J, Blanter S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett, 2014, 14, 3347 doi: 10.1021/nl5008085
[32]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[33]
Baboukani A R, Khakpour I, Drozd V, et al. Single-step exfoliation of black phosphorus and deposition of phosphorene via bipolar electrochemistry for capacitive energy storage application. J Mater Chem, 2019, 7, 25548 doi: 10.1039/C9TA09641H
[34]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033 doi: 10.1021/nn501226z
[35]
Xie J, Si M, Yang D, et al. A theoretical study of blue phosphorene nanoribbons based on first-principles calculations. J Appl Phys, 2014, 116, 073704 doi: 10.1063/1.4893589
[36]
Aierken Y, Cakir D, Sevik C, et al. Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach. Phys Rev B, 2015, 92, 081408 doi: 10.1103/PhysRevB.92.081408
[37]
Ghosh B, Nahas S, Bhowmick S, et al. Electric field induced gap modification in ultrathin blue phosphorus. Phys Rev B, 2015, 91, 115433 doi: 10.1103/PhysRevB.91.115433
[38]
Zhu Z, Tománek D. Semiconducting layered blue phosphorus: A computational study. Phys Rev Lett, 2014, 112, 176802 doi: 10.1103/PhysRevLett.112.176802
[39]
Zhang J L, Zhao S T, Han C, et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett, 2016, 16, 4903 doi: 10.1021/acs.nanolett.6b01459
[40]
Wang C, You Y Z, Choi J H. First-principles study of defects in blue phosphorene. Mater Res Express, 2019, 7, 015005 doi: 10.1088/2053-1591/ab59fc
[41]
Wang Y P, Zhang C W, Ji W X, et al. Tunable quantum spin Hall effect via strain in two-dimensional arsenene monolayer. J Phys D, 2016, 49, 055305 doi: 10.1088/0022-3727/49/5/055305
[42]
Gusmão R, Sofer Z, Bouša D, et al. Innentitelbild: pnictogen (As, Sb, Bi) nanosheets for electrochemical applications are produced by shear exfoliation using kitchen blenders. Angew Chem Int Ed, 2017, 129, 14510 doi: 10.1002/ange.201710278
[43]
Kamal C, Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys Rev B, 2015, 91, 085423 doi: 10.1103/PhysRevB.91.085423
[44]
Pizzi G, Gibertini M, Dib E, et al. Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat Commun, 2016, 7, 12585 doi: 10.1038/ncomms12585
[45]
Tsai H, Wang S, Hsiao C, et al. Direct synthesis and practical bandgap estimation of multilayer arsenene nanoribbons. Chem Mater, 2016, 28, 425 doi: 10.1021/acs.chemmater.5b04949
[46]
Ares P, Aguilar-Galindo F, Rodríguez-San-miguel D, et al. Mechanical isolation of highly stable antimonene under ambient conditions. Adv Mater, 2016, 28, 6332 doi: 10.1002/adma.201602128
[47]
Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat Commun, 2016, 7, 13352 doi: 10.1038/ncomms13352
[48]
Wu X, Shao Y, Liu H, et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv Mater, 2017, 29, 1605407 doi: 10.1002/adma.201605407
[49]
Zhu S, Shao Y, Wang E, et al. Evidence of topological edge states in buckled antimonene monolayers. Nano Lett, 2019, 19, 6323 doi: 10.1021/acs.nanolett.9b02444
[50]
Shao Y, Liu Z L, Cheng C, et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett, 2018, 18, 2133 doi: 10.1021/acs.nanolett.8b00429
[51]
Zhao A D, Wang B. Two-dimensional graphene-like Xenes as potential topological materials. APL Mater, 2020, 8, 030701 doi: 10.1063/1.5135984
[52]
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study. Phys Rev Lett, 2011, 107, 136805 doi: 10.1103/PhysRevLett.107.136805
[53]
Reis F, Li G, Dudy L, et al. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science, 2017, 357, 287 doi: 10.1126/science.aai8142
[54]
Stühler R, Reis F, Müller T, et al. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat Phys, 2020, 16, 47 doi: 10.1038/s41567-019-0697-z
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3966 Times PDF downloads: 165 Times Cited by: 0 Times

    History

    Received: 09 July 2020 Revised: 20 July 2020 Online: Accepted Manuscript: 28 July 2020Uncorrected proof: 29 July 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, Yeliang Wang. Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. Journal of Semiconductors, 2020, 41(8): 081003. doi: 10.1088/1674-4926/41/8/081003 P W Yuan, T Zhang, J T Sun, L W Liu, Y G Yao, Y L Wang, Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. J. Semicond., 2020, 41(8): 081003. doi: 10.1088/1674-4926/41/8/081003.Export: BibTex EndNote
      Citation:
      Peiwen Yuan, Teng Zhang, Jiatao Sun, Liwei Liu, Yugui Yao, Yeliang Wang. Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. Journal of Semiconductors, 2020, 41(8): 081003. doi: 10.1088/1674-4926/41/8/081003

      P W Yuan, T Zhang, J T Sun, L W Liu, Y G Yao, Y L Wang, Recent progress in 2D group-V elemental monolayers: fabrications and properties[J]. J. Semicond., 2020, 41(8): 081003. doi: 10.1088/1674-4926/41/8/081003.
      Export: BibTex EndNote

      Recent progress in 2D group-V elemental monolayers: fabrications and properties

      doi: 10.1088/1674-4926/41/8/081003
      More Information
      • Corresponding author: E-mail: liwei.liu@bit.edu.cn
      • Received Date: 2020-07-09
      • Revised Date: 2020-07-20
      • Published Date: 2020-08-09

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return