SEMICONDUCTOR INTEGRATED CIRCUITS

An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC

Hua Fan, Xue Han, Qi Wei and Huazhong Yang

+ Author Affiliations

 Corresponding author: Fan Hua, fanhua7531@163.com

PDF

Abstract: A 10 or 12 bit programmable successive approximation register (SAR) ADC incorporating improved time-domain comparator for bridge stress monitoring systems is presented. Techniques for improving the accuracy of time-domain comparator are presented. The application of these approaches is illustrated using results from an experimental 10 or 12 bit programmable SAR ADC. Prototyped in a 0.18-μm, 6M1P CMOS process, the ADC, at 12 bit, 100 kS/s, achieves a Nyquist signal-to-noise-plus-distortion ratio (SNDR) of 68 dB (11 ENOB), a spurious free dynamic range (SFDR) of 77.48 dB, while dissipating 558 μW from a 1.8-V supply. Its differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.2/-0.74 LSB and +1.27/-0.97 LSB, respectively.

Key words: analog-to-digital converter (ADC)non-calibratingsuccessive approximation register (SAR)



[1]
Shikata A, Sekimoto R, Kuroda T, et al. A 0.5 V 1.1 MS/sec 6.3 fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS. IEEE J Solid-State Circuits, 2012, 47(4):1022 doi: 10.1109/JSSC.2012.2185352
[2]
Liu C C, Chang S J, Huang G Y, et al. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits, 2010, 45(4):731 doi: 10.1109/JSSC.2010.2042254
[3]
Cho S H, Lee C K, Kwon J K, et al. A 550-μW 10-bit 40-MS/s SAR ADC with multistep addition-only digital error correction. IEEE J Solid-State Circuits, 2011, 46(8):1881 doi: 10.1109/JSSC.2011.2151450
[4]
Zhu Y, Chan C H, Chio U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J Solid-State Circuits, 2010, 45(5):1111 http://ieeexplore.ieee.org/document/5482529/?reload=true&arnumber=5482529&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5482512)
[5]
Cho T S, Lee K J, Kong J, et al. A 32-μW 1.83-kS/s carbon nanotube chemical sensor system. IEEE J Solid-State Circuits, 2009, 44:2348 doi: 10.1109/JSSC.2009.2023158
[6]
Van Elzakker M, Van Tuijl E, Geraedts P, et al. A 1.9μW 4.4 fJ/conversion-step, 10 bit, 1 MS/s charge redistribution ADC. IEEE International Solid-State Circuits Conference (ISSCC), 2008:244 https://zh.scribd.com/doc/151430867/Solving-problems-with-NMR-pdf
[7]
Chen Y, Tsukamoto S, Kuroda T. A 9 b 100 MS/s 1.46 mW SAR ADC in 65 nm CMOS. IEEE Asian Solid-State Circuits Confer-ence (ASSCC), 2009:145 http://ieeexplore.ieee.org/document/5357199/?reload=true&arnumber=5357199&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5357143)%26pageNumber%3D3
[8]
Hamade A R. A single chip all-MOS 8-bit A/D converter. IEEE J Solid-State Circuits, 1981, SC-13:785 http://ieeexplore.ieee.org/document/1052051/
[9]
Zhu Y, Chan C H, Chio U F, et al. Parasitics nonlinearity cancellation technique for split DAC architecture by using capacitive charge-pump. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010:889 doi: 10.1007/s10470-012-9977-6
[10]
Kuramochi Y, Matsuzawa K, Kawabata M. A 0.027-mm2 self-calibrating successive approximation ADC core in 0.18-μm CMOS. IEICE Trans, Fundamentals, 2009, E92-A(2):360 doi: 10.1587/transfun.E92.A.360
[11]
Gambini Si, Rabaey J M. Low voltage analog to digital converter design in 90 nm CMOS. Technical Report No.UCB/EECS-2007-17, Berkeley, 2007
[12]
Agnes A, Bonizzoni E, Maicovati P, et al. A 9.4-ENOB 1 V 3.8μW 100 kS/s SAR ADC with time-domain comparator. IEEE International Solid-State Circuits Conference (ISSCC), 2008, 51:246 https://www.researchgate.net/publication/4332071_A_94-ENOB_1V_38mW_100kSs_SAR_ADC_with_Time-Domain_Comparator
[13]
Lee S K, Park S J, Park H J, et al. A 1.3μW 0.6 V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS. Symposium on VLSI Circuits Digest of Technical Papers, 2009:242
[14]
Nuzzo P, De Bernardinis F, Terreni P, et al. Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuit Syst I:Fundamental Theory and Applications, 2008, 55(6):1441 doi: 10.1109/TCSI.2008.917991
[15]
Micheva N I. Design port and optimization of a high-speed SAR ADC comparator from 65 nm to 0.11μm. Master Thesis of MIT, 2011:44 https://zh.scribd.com/document/245501847/Iccter-Proceedings
[16]
Kobenge S B, Yang H. A novel low power time-mode comparator for successive approximation register ADC. IEICE Electronics Express, 2009, 6(16):1155 doi: 10.1587/elex.6.1155
[17]
Van der Plas G, Decoutere S, Donnay S. A 0.19 pJ/conversion-step 2.5 mW 1.25 GS/s 4 b ADC in a 90 nm digital CMOS process. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2008:556 doi: 10.1007/s10470-013-0156-1?view=classic
[18]
Behzad R. Design of analog CMOS integrated circuits. International Edition, 2001 http://catalog.lib.kyushu-u.ac.jp/recordID/1001200565
[19]
Ali A M A, Dillon C, Sneed R, et al. A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter. IEEE J Solid-State Circuits, 2006, 41(8):1846 doi: 10.1109/JSSC.2006.875291
[20]
Analog Devices. Low power, pseudo differential, 100 ksps 12-bit ADC in an 8-lead SOT-23. AD7457, 2005 doi: 10.1007/s10470-012-9977-6
[21]
ZMDI. 12-bit, 200 ksps, 8-channel, serial output ADC datasheet. ZADCS146, 2010 doi: 10.1007/s10470-012-9977-6
[22]
Chiang C T, Chang W H. A 12-bit multi-channel dual-mode successive approximation ADC for power management bus (Pmbus) devices. International Journal of Circuit Theory and Applications, 2011(Published online in Wiley Interscience (www.Interscience.wiley.com). DOI: 10.1002/cta.811)
[23]
Wang Z, Lin R, Gordon E, et al. An in-situ temperature-sensing interface based on a SAR ADC in 45 nm LP digital CMOS for the frequency-temperature compensation of crystal oscillators. IEEE International Solid-State Circuits Conference (ISSCC), 2010:316 doi: 10.1007/s10470-014-0298-9/fulltext.html
[24]
Verma N, Chandrakasan A P. An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J Solid-State Circuits, 2007, 42(6):1196 doi: 10.1109/JSSC.2007.897157
[25]
Ueda Y, Yamauchi H, Mukuno M, et al. 6.33 mW MPEG audio decoding on a multimedia processor. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2006:414 http://ieeexplore.ieee.org/document/1696218/authors
[26]
Jiang T, Liu W, Zhong F Y, et al. Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40 nm-CMOS. IEEE Custom Integrated Circuits Conference (CICC), 2010:1 http://ieeexplore.ieee.org/document/5617411/keywords
[27]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3 mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits, 2006, 41(12):2669 doi: 10.1109/JSSC.2006.884231
Fig. 1.  10 or 12 bit programmable SAR ADC block diagram.

Fig. 2.  Unit element of a DAC in (a) conventional two's complement architecture and (b) tri-level based architecture.

Fig. 3.  Schematic of proposed differential time-domain comparator. (a) Voltage-to-time converter. (b) Binary phase detector.

Fig. 4.  Timing diagram of time-domain comparator.

Fig. 5.  Model of VTC.

Fig. 6.  Model of VTC in Ref. [12] with an input-referred offset.

Fig. 7.  Micrograph of entire ADC prototype.

Fig. 8.  Pins of SAR ADC.

Fig. 9.  Measured SNDR and SFDR versus the input frequency in 10 bit mode (a) at $f_{\rm s}$ $=$ 100 kS/s and (b) at $f_{\rm s}$ $=$ 200 kS/s.

Fig. 10.  FFT of ADC in 10 bit 100kS/s mode with Nyquist input tone (a) with $f_{\rm in}$ $=$ 9.13 kS/s and (b) with $f_{\rm in}$ $=$ 47.7 kS/s.

Fig. 11.  FFT of ADC in 10 bit 200 kS/s mode with (a) $f_{\rm in}$ $=$ 18.78 kS/s and (b) $f_{\rm in}$ $=$ 98.78 kS/s.

Fig. 12.  Measured SNDR and SFDR versus the input frequency in 12 bit mode (a) at $f_{\rm s}$ $=$ 100 kS/s and (b) at $f_{\rm s}$ $=$ 200 kS/s.

Fig. 13.  FFT of ADC in 12 bit 100 kS/s mode with (a) $f_{\rm in}$ $=$ 18.78 kS/s and (b) $f_{\rm in}$ $=$ 98.78 kS/s.

Fig. 14.  FFT of ADC in 12 bit 200 kS/s mode with (a) $f_{\rm in}$ $=$18.78 kS/s and (b) $f_{\rm in}$ $=$ 98.78 kS/s.

Fig. 15.  Measured DNL and INL in 10 bit mode at 100 kS/s.

Fig. 16.  Measured DNL and INL in 10 bit mode at 200 kS/s.

Fig. 17.  Measured DNL and INL in 12 bit mode at 100 kS/s.

Fig. 18.  Measured DNL and INL in 12 bit mode at 200 kS/s.

Table 1.   ADC performance summary.

Table 2.   Comparison of performance on several ADCs.

[1]
Shikata A, Sekimoto R, Kuroda T, et al. A 0.5 V 1.1 MS/sec 6.3 fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS. IEEE J Solid-State Circuits, 2012, 47(4):1022 doi: 10.1109/JSSC.2012.2185352
[2]
Liu C C, Chang S J, Huang G Y, et al. A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J Solid-State Circuits, 2010, 45(4):731 doi: 10.1109/JSSC.2010.2042254
[3]
Cho S H, Lee C K, Kwon J K, et al. A 550-μW 10-bit 40-MS/s SAR ADC with multistep addition-only digital error correction. IEEE J Solid-State Circuits, 2011, 46(8):1881 doi: 10.1109/JSSC.2011.2151450
[4]
Zhu Y, Chan C H, Chio U F, et al. A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J Solid-State Circuits, 2010, 45(5):1111 http://ieeexplore.ieee.org/document/5482529/?reload=true&arnumber=5482529&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5482512)
[5]
Cho T S, Lee K J, Kong J, et al. A 32-μW 1.83-kS/s carbon nanotube chemical sensor system. IEEE J Solid-State Circuits, 2009, 44:2348 doi: 10.1109/JSSC.2009.2023158
[6]
Van Elzakker M, Van Tuijl E, Geraedts P, et al. A 1.9μW 4.4 fJ/conversion-step, 10 bit, 1 MS/s charge redistribution ADC. IEEE International Solid-State Circuits Conference (ISSCC), 2008:244 https://zh.scribd.com/doc/151430867/Solving-problems-with-NMR-pdf
[7]
Chen Y, Tsukamoto S, Kuroda T. A 9 b 100 MS/s 1.46 mW SAR ADC in 65 nm CMOS. IEEE Asian Solid-State Circuits Confer-ence (ASSCC), 2009:145 http://ieeexplore.ieee.org/document/5357199/?reload=true&arnumber=5357199&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5357143)%26pageNumber%3D3
[8]
Hamade A R. A single chip all-MOS 8-bit A/D converter. IEEE J Solid-State Circuits, 1981, SC-13:785 http://ieeexplore.ieee.org/document/1052051/
[9]
Zhu Y, Chan C H, Chio U F, et al. Parasitics nonlinearity cancellation technique for split DAC architecture by using capacitive charge-pump. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010:889 doi: 10.1007/s10470-012-9977-6
[10]
Kuramochi Y, Matsuzawa K, Kawabata M. A 0.027-mm2 self-calibrating successive approximation ADC core in 0.18-μm CMOS. IEICE Trans, Fundamentals, 2009, E92-A(2):360 doi: 10.1587/transfun.E92.A.360
[11]
Gambini Si, Rabaey J M. Low voltage analog to digital converter design in 90 nm CMOS. Technical Report No.UCB/EECS-2007-17, Berkeley, 2007
[12]
Agnes A, Bonizzoni E, Maicovati P, et al. A 9.4-ENOB 1 V 3.8μW 100 kS/s SAR ADC with time-domain comparator. IEEE International Solid-State Circuits Conference (ISSCC), 2008, 51:246 https://www.researchgate.net/publication/4332071_A_94-ENOB_1V_38mW_100kSs_SAR_ADC_with_Time-Domain_Comparator
[13]
Lee S K, Park S J, Park H J, et al. A 1.3μW 0.6 V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS. Symposium on VLSI Circuits Digest of Technical Papers, 2009:242
[14]
Nuzzo P, De Bernardinis F, Terreni P, et al. Noise analysis of regenerative comparators for reconfigurable ADC architectures. IEEE Trans Circuit Syst I:Fundamental Theory and Applications, 2008, 55(6):1441 doi: 10.1109/TCSI.2008.917991
[15]
Micheva N I. Design port and optimization of a high-speed SAR ADC comparator from 65 nm to 0.11μm. Master Thesis of MIT, 2011:44 https://zh.scribd.com/document/245501847/Iccter-Proceedings
[16]
Kobenge S B, Yang H. A novel low power time-mode comparator for successive approximation register ADC. IEICE Electronics Express, 2009, 6(16):1155 doi: 10.1587/elex.6.1155
[17]
Van der Plas G, Decoutere S, Donnay S. A 0.19 pJ/conversion-step 2.5 mW 1.25 GS/s 4 b ADC in a 90 nm digital CMOS process. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2008:556 doi: 10.1007/s10470-013-0156-1?view=classic
[18]
Behzad R. Design of analog CMOS integrated circuits. International Edition, 2001 http://catalog.lib.kyushu-u.ac.jp/recordID/1001200565
[19]
Ali A M A, Dillon C, Sneed R, et al. A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs jitter. IEEE J Solid-State Circuits, 2006, 41(8):1846 doi: 10.1109/JSSC.2006.875291
[20]
Analog Devices. Low power, pseudo differential, 100 ksps 12-bit ADC in an 8-lead SOT-23. AD7457, 2005 doi: 10.1007/s10470-012-9977-6
[21]
ZMDI. 12-bit, 200 ksps, 8-channel, serial output ADC datasheet. ZADCS146, 2010 doi: 10.1007/s10470-012-9977-6
[22]
Chiang C T, Chang W H. A 12-bit multi-channel dual-mode successive approximation ADC for power management bus (Pmbus) devices. International Journal of Circuit Theory and Applications, 2011(Published online in Wiley Interscience (www.Interscience.wiley.com). DOI: 10.1002/cta.811)
[23]
Wang Z, Lin R, Gordon E, et al. An in-situ temperature-sensing interface based on a SAR ADC in 45 nm LP digital CMOS for the frequency-temperature compensation of crystal oscillators. IEEE International Solid-State Circuits Conference (ISSCC), 2010:316 doi: 10.1007/s10470-014-0298-9/fulltext.html
[24]
Verma N, Chandrakasan A P. An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes. IEEE J Solid-State Circuits, 2007, 42(6):1196 doi: 10.1109/JSSC.2007.897157
[25]
Ueda Y, Yamauchi H, Mukuno M, et al. 6.33 mW MPEG audio decoding on a multimedia processor. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2006:414 http://ieeexplore.ieee.org/document/1696218/authors
[26]
Jiang T, Liu W, Zhong F Y, et al. Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR-ADC in 40 nm-CMOS. IEEE Custom Integrated Circuits Conference (CICC), 2010:1 http://ieeexplore.ieee.org/document/5617411/keywords
[27]
Chen S W M, Brodersen R W. A 6-bit 600-MS/s 5.3 mW asynchronous ADC in 0.13-μm CMOS. IEEE J Solid-State Circuits, 2006, 41(12):2669 doi: 10.1109/JSSC.2006.884231
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2110 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 29 May 2012 Revised: 01 July 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hua Fan, Xue Han, Qi Wei, Huazhong Yang. An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC[J]. Journal of Semiconductors, 2013, 34(1): 015010. doi: 10.1088/1674-4926/34/1/015010 H Fan, X Han, Q Wei, H Z Yang. An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC[J]. J. Semicond., 2013, 34(1): 015010. doi: 10.1088/1674-4926/34/1/015010.Export: BibTex EndNote
      Citation:
      Hua Fan, Xue Han, Qi Wei, Huazhong Yang. An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC[J]. Journal of Semiconductors, 2013, 34(1): 015010. doi: 10.1088/1674-4926/34/1/015010

      H Fan, X Han, Q Wei, H Z Yang. An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC[J]. J. Semicond., 2013, 34(1): 015010. doi: 10.1088/1674-4926/34/1/015010.
      Export: BibTex EndNote

      An 11-bit ENOB, accuracy-programmable, and non-calibrating time-mode SAR ADC

      doi: 10.1088/1674-4926/34/1/015010
      Funds:

      Project supported by the PhD Programs Foundation of the Ministry of Education of China (No. 20111011315) and the National Science and Technology Important Project of China (No. 2010ZX03006-003-01)

      the PhD Programs Foundation of the Ministry of Education of China 20111011315

      the National Science and Technology Important Project of China 2010ZX03006-003-01

      More Information
      • Corresponding author: Fan Hua, fanhua7531@163.com
      • Received Date: 2012-05-29
      • Revised Date: 2012-07-01
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return