SEMICONDUCTOR PHYSICS

Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles

Ibiyemi Abideen2, , Yusuf Gbadebo1 and Faremi Abass2

+ Author Affiliations

 Corresponding author: Ibiyemi Abideen,Email: abideen.ibiyemi@fuoye.edu.ng

PDF

Abstract: Transparent conducting oxide of fluorine-doped tin oxide (FTO) thin films was deposited from chemical solutions of tin chloride and ammonium fluoride using streaming process for electroless and electrochemical deposition (SPEED) at substrate temperature 450, 500, and 530 ℃ respectively. The effect of substrate temperatures on the microstructural properties such as crystallite size, dislocation density, micro strain, volume of the unit cell, volume of the nanoparticles, number of the unit cell, bond length and the lattice constants were examined using XRD technique. Only reflections from (110) and (200) planes of tetragonal SnO2 crystal structure were obvious. The peaks are relatively weak indicating that the deposited materials constitute grains in the nano dimension. Hall measurements, which were done using van der Pauw technique, showed that the FTO films are n-type semiconductors. The most favorable electrical values were achieved for the film grown at 530 ℃ with low resistivity of 7.64×10-4Ω·cm and Hall mobility of -9.92 cm2/(V·s).

Key words: FTOSPEEDtin oxidesubstrate temperaturefluorine



[1]
Wagner J F. Transparent electronics. Science, 2003, 300: 1245 doi: 10.1126/science.1085276
[2]
Presley R E, Munsee C L, Park C H, et al. Transparent tin oxide thin-film transistors. J Phys, 2004, D37: 2810 doi: 10.1088/0022-3727/37/20/006/pdf
[3]
Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci, 2005, 79: 47 doi: 10.1016/j.progsurf.2005.09.002
[4]
Gui T, Hao L, Wang J. Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin Opt Lett, 2010, 8(s1): 134 doi: 10.3788/COL
[5]
Kwon J H, Choi Y H, Kim D H. Orientation relationship of polycrystalline Pd-doped SnO2 Thin film deposits on sapphire substrates. Thin Solid Films, 2008, 517(2): 550 doi: 10.1016/j.tsf.2008.06.074
[6]
Jiménez V M, Espinós J P, Gonzaález-Elipe A R. Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials. Sens Actuators B, 1999, 61(1-3): 23 doi: 10.1016/S0925-4005(99)00275-0
[7]
Murakami K, Nakajima K, Kaneko S. Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 2007, 515(24): 8632 doi: 10.1016/j.tsf.2007.03.128
[8]
Ghimbeu C M, Landschoot R C, Schoonman J. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). J Eur Ceram Soc, 2007, 27(1): 207 doi: 10.1016/j.jeurceramsoc.2006.05.092
[9]
Chung J H, Choe Y S, Kim D S. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films. Thin Solid Films, 1999, 349(1/2): 126 http://cat.inist.fr/?aModele=afficheN&cpsidt=1862190
[10]
Ohgaki T, Matsuokaa R, Watanabe K. Synthesizing SnO2 thin films and characterizing sensing performances. Sens Actuators B, 2010, 150(1): 99 doi: 10.1016/j.snb.2010.07.036
[11]
Leo G, Rella R, Siciliano P. Sprayed SnO2 thin films for NO2 sensors. Sens Actuators B, 1999, 58(1-3): 370 doi: 10.1016/S0925-4005(99)00098-2
[12]
Yang T, Qin X, Wang H. Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films, 2010, 518(19): 5542 doi: 10.1016/j.tsf.2010.04.063
[13]
Ajili M, Castagné M, Turki N K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct, 2013, 53(1): 213 http://www.sciencedirect.com/science/article/pii/S074960361200290X?via%3Dihub
[14]
Hoffman R L, Norris B J, Wagner J F. ZnO-based transparent thin-film transistors. Appl Phys Lett, 2003, 82: 733 doi: 10.1063/1.1542677
[15]
Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys, 2003, 93: 1624 doi: 10.1063/1.1534627
[16]
Granqvist C G, Hultåker A. Transparent and conducting ITO films: new developments and applications, transparent. Thin Solid Films, 2002, 411: 1 doi: 10.1016/S0040-6090(02)00163-3
[17]
Boshta M, Mahmoud F A, Sayed M H. Characterization of sprayed SnO2:Pd thin films for gas sensing applications. J Ovonic Res, 2010, 6: 93
[18]
Obaida. M, Moussa I, Boshta M. Low sheet resistance F-doped SnO2 thin film deposited by novel spray pyrolysis technique. Int J Chem Tech Res, 2015, 8: 239
[19]
Cullity B D. Elements of X-ray diffraction. 2nd ed. Addison-Wesley, Reading, MA, 1978
[20]
Shen C M, Zhang X G, Li H L. Influence of different deposition potentials on morphology and structure of CdSe films. Appl Surf Sci, 2005, 240: 34 doi: 10.1016/j.apsusc.2004.05.298
[21]
Huang X H, Tay C B, Zhan Z Y, et al. Universal photoluminescence evolution of solution-grown ZnO nanorods with annealing: important role of hydrogen donor. Cryst Eng Comm, 2011, 13: 7032 doi: 10.1039/c1ce05882g
[22]
Ibiyemi A A, Awodugba A O. The influence of annealing temperature on the electrical and optical properties of ZnS nanostructure. Pacific J Sci Technol, 2012, 13(1): 213
[23]
Guillen C, Martinez M, Moffiotte C, et al. Chemistry of CdS/CuInSe2 structure as controlled by CdS deposition bath. J Electrochem Soc, 2009, 148: 602
Fig. 1.  XRD analysis of doped F:SnO $_{\mathrm{2}}$ .

Fig. 2.  (Color online) AFM analysis of doped FTO.

Fig. 4.  (Color online) Resistivity, electrical conductivity and Hall mobility of FTO.

Fig. 3.  Sheet resistance and carrier concentration of FTO.

Fig. 5.  (Color online) Crystallite size, dislocation density, micro-strain, volume of the particle, bond length and number of the unit cell of FTO.

Fig. 6.  (Color online) Crystallite size, dislocation density and micro-strain of FTO.

Fig. 7.  Optical energy band gap of FTO film.

Fig. 8.  Lattice constant and interplanar distance of FTO film.

[1]
Wagner J F. Transparent electronics. Science, 2003, 300: 1245 doi: 10.1126/science.1085276
[2]
Presley R E, Munsee C L, Park C H, et al. Transparent tin oxide thin-film transistors. J Phys, 2004, D37: 2810 doi: 10.1088/0022-3727/37/20/006/pdf
[3]
Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci, 2005, 79: 47 doi: 10.1016/j.progsurf.2005.09.002
[4]
Gui T, Hao L, Wang J. Structure and features of SnO2 thin films prepared by RF reactive sputtering. Chin Opt Lett, 2010, 8(s1): 134 doi: 10.3788/COL
[5]
Kwon J H, Choi Y H, Kim D H. Orientation relationship of polycrystalline Pd-doped SnO2 Thin film deposits on sapphire substrates. Thin Solid Films, 2008, 517(2): 550 doi: 10.1016/j.tsf.2008.06.074
[6]
Jiménez V M, Espinós J P, Gonzaález-Elipe A R. Effect of texture and annealing treatments in SnO2 and Pd/SnO2 gas sensor materials. Sens Actuators B, 1999, 61(1-3): 23 doi: 10.1016/S0925-4005(99)00275-0
[7]
Murakami K, Nakajima K, Kaneko S. Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 2007, 515(24): 8632 doi: 10.1016/j.tsf.2007.03.128
[8]
Ghimbeu C M, Landschoot R C, Schoonman J. Preparation and characterization of SnO2 and Cu-doped SnO2 thin films using electrostatic spray deposition (ESD). J Eur Ceram Soc, 2007, 27(1): 207 doi: 10.1016/j.jeurceramsoc.2006.05.092
[9]
Chung J H, Choe Y S, Kim D S. Effect of low energy oxygen ion beam on optical and electrical characteristics of dual ion beam sputtered SnO2 thin films. Thin Solid Films, 1999, 349(1/2): 126 http://cat.inist.fr/?aModele=afficheN&cpsidt=1862190
[10]
Ohgaki T, Matsuokaa R, Watanabe K. Synthesizing SnO2 thin films and characterizing sensing performances. Sens Actuators B, 2010, 150(1): 99 doi: 10.1016/j.snb.2010.07.036
[11]
Leo G, Rella R, Siciliano P. Sprayed SnO2 thin films for NO2 sensors. Sens Actuators B, 1999, 58(1-3): 370 doi: 10.1016/S0925-4005(99)00098-2
[12]
Yang T, Qin X, Wang H. Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films, 2010, 518(19): 5542 doi: 10.1016/j.tsf.2010.04.063
[13]
Ajili M, Castagné M, Turki N K. Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct, 2013, 53(1): 213 http://www.sciencedirect.com/science/article/pii/S074960361200290X?via%3Dihub
[14]
Hoffman R L, Norris B J, Wagner J F. ZnO-based transparent thin-film transistors. Appl Phys Lett, 2003, 82: 733 doi: 10.1063/1.1542677
[15]
Masuda S, Kitamura K, Okumura Y, et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys, 2003, 93: 1624 doi: 10.1063/1.1534627
[16]
Granqvist C G, Hultåker A. Transparent and conducting ITO films: new developments and applications, transparent. Thin Solid Films, 2002, 411: 1 doi: 10.1016/S0040-6090(02)00163-3
[17]
Boshta M, Mahmoud F A, Sayed M H. Characterization of sprayed SnO2:Pd thin films for gas sensing applications. J Ovonic Res, 2010, 6: 93
[18]
Obaida. M, Moussa I, Boshta M. Low sheet resistance F-doped SnO2 thin film deposited by novel spray pyrolysis technique. Int J Chem Tech Res, 2015, 8: 239
[19]
Cullity B D. Elements of X-ray diffraction. 2nd ed. Addison-Wesley, Reading, MA, 1978
[20]
Shen C M, Zhang X G, Li H L. Influence of different deposition potentials on morphology and structure of CdSe films. Appl Surf Sci, 2005, 240: 34 doi: 10.1016/j.apsusc.2004.05.298
[21]
Huang X H, Tay C B, Zhan Z Y, et al. Universal photoluminescence evolution of solution-grown ZnO nanorods with annealing: important role of hydrogen donor. Cryst Eng Comm, 2011, 13: 7032 doi: 10.1039/c1ce05882g
[22]
Ibiyemi A A, Awodugba A O. The influence of annealing temperature on the electrical and optical properties of ZnS nanostructure. Pacific J Sci Technol, 2012, 13(1): 213
[23]
Guillen C, Martinez M, Moffiotte C, et al. Chemistry of CdS/CuInSe2 structure as controlled by CdS deposition bath. J Electrochem Soc, 2009, 148: 602
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3466 Times PDF downloads: 39 Times Cited by: 0 Times

    History

    Received: 08 September 2016 Revised: 09 February 2017 Online: Published: 01 July 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ibiyemi Abideen, Yusuf Gbadebo, Faremi Abass. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles[J]. Journal of Semiconductors, 2017, 38(7): 072001. doi: 10.1088/1674-4926/38/7/072001 I Abideen, Y Gbadebo, F Abass. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles[J]. J. Semicond., 2017, 38(7): 072001. doi: 10.1088/1674-4926/38/7/072001.Export: BibTex EndNote
      Citation:
      Ibiyemi Abideen, Yusuf Gbadebo, Faremi Abass. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles[J]. Journal of Semiconductors, 2017, 38(7): 072001. doi: 10.1088/1674-4926/38/7/072001

      I Abideen, Y Gbadebo, F Abass. Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles[J]. J. Semicond., 2017, 38(7): 072001. doi: 10.1088/1674-4926/38/7/072001.
      Export: BibTex EndNote

      Substrate temperature effect on the photophysical and microstructural properties of fluorine-doped tin oxide nanoparticles

      doi: 10.1088/1674-4926/38/7/072001
      More Information
      • Corresponding author: Ibiyemi Abideen,Email: abideen.ibiyemi@fuoye.edu.ng
      • Received Date: 2016-09-08
      • Revised Date: 2017-02-09
      • Published Date: 2017-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return