SEMICONDUCTOR MATERIALS

Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys

Wei Li1, , Peng Jin1, , Weiying Wang1, Defeng Mao1, Guipeng Liu1, Zhanguo Wang1, Jiaming Wang2, Fujun Xu2 and Bo Shen2

+ Author Affiliations

 Corresponding author: Li Wei, Email:livy@semi.ac.cn; Jin Peng, Email:pengjin@semi.ac.cn

PDF

Abstract: InAlN has been studied by means of temperature-dependent time-integrated photoluminescence and time-resolved photoluminescence. The variation of PL peak energy did not follow the behavior predicted by Varshni formula, and a faster redshift with increasing temperature was observed. We used a model that took account of the thermal activation and thermal transfer of localized excitons to describe and explain the observed behavior. A good fitting to the experiment result is obtained. We believe the anomalous temperature dependence of PL peak energy shift can be attributed to the temperature-dependent redistribution of localized excitons induced by thermal activation and thermal transfer in the strongly localized states. V-shaped defects are thought to be a major factor causing the strong localized states in our In0.153Al0.847N sample.

Key words: InAlNphotoluminescencethermal activationV-defects



[1]
Choi S, Kim H J, Kim S S, et al. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer. Appl Phys Lett, 2010, 96:221105 doi: 10.1063/1.3441373
[2]
Chen Z T, Sakai Y, Zhang J C, et al. Effect of strain on quantum efficiency of InAlN-based solar-blind photodiodes. Appl Phys Lett, 2009, 95:083504 doi: 10.1063/1.3213562
[3]
Ganguly S, Konar A, Hu Z Y, et al. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors. Appl Phys Lett, 2012, 101:253519 doi: 10.1063/1.4773244
[4]
Berger C, Dadgar A, Bläsing J, et al. Growth of AlInN/AlGaN distributed Bragg reflectors for high quality microcavities. Phys Status Solidi C, 2012, 9:1253 doi: 10.1002/pssc.v9.5
[5]
Deĭbuk V G, Voznyĭ A V. Thermodynamic stability and redistribution of charges in ternary AlGaN, InGaN, and InAlN Alloys. Semiconductors, 2005, 39:623 doi: 10.1134/1.1944849
[6]
Ferhat M, Bechstedt F. First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys:relation to structural and thermodynamic properties. Phys Rev B, 2002, 65:075213 doi: 10.1103/PhysRevB.65.075213
[7]
Jones R E, Broesler R, Yu K M, et al. Band gap bowing parameter of In1-xAlxN. J Appl Phys, 2008, 104:123501 doi: 10.1063/1.3039509
[8]
Wang K, Martin R W, Amabile D, et al. Optical energies of AlInN epilayers. J Appl Phys, 2008, 103:073510 doi: 10.1063/1.2898533
[9]
Iliopoulos E, Adikimenakis A, Giesen C, et al. Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl Phys Lett, 2008, 92:191907 doi: 10.1063/1.2921783
[10]
Eliseev P G, Perlin P, Lee J, et al. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources. Appl Phys Lett, 1997, 71:569 doi: 10.1063/1.119797
[11]
Cho Y H, Gainer G H, Lam J B, et al. Dynamics of anomalous optical transitions in AlxGa1-xN alloys. Phys Rev B, 2000, 61:7203 doi: 10.1103/PhysRevB.61.7203
[12]
Li Q, Xu S J, Cheng W C, et al. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys. Appl Phys Lett, 2001, 79:1810 doi: 10.1063/1.1403655
[13]
Kamimura J, Kishino K, Kikuchi A. Low-temperature photoluminescence studies of In-rich InAlN nanocolumns. Phys Status Solidi RRL, 2012, 6(3):123 doi: 10.1002/pssr.v6.3
[14]
Miao Z L, Yu T J, Xu F J, et al. Strain effects on InxAl1-xN crystalline quality grown on GaN templates by metalorganic chemical vapor deposition. J Appl Phys, 2010, 107:043515 doi: 10.1063/1.3305397
[15]
Bacher G, Hartmann C, Schweizer H, et al. Exciton dynamics in InxGa1-xAs/GaAs quantum-well heterostructures:competition between capture and thermal emission. Phys Rev B, 1993, 47:9545 doi: 10.1103/PhysRevB.47.9545
[16]
Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34:149 doi: 10.1016/0031-8914(67)90062-6
[17]
Jiang L F, Shen W Z, Guo Q X. Temperature dependence of the optical properties of AlInN. J Appl Phys, 2009, 106:013515 doi: 10.1063/1.3160299
[18]
Xu Z Y, Lu Z D, Yuan Z L, et al. Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots. Superlattices Microstruct, 1998, 23:381 http://www.sciencedirect.com/science/article/pii/S0749603696901962#!
[19]
Onuma T, Chichibu S F, Uchinuma Y, et al. Recombination dynamics of localized excitons in Al1-xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy. J Appl Phys, 2003, 94:2449 doi: 10.1063/1.1592868
[20]
Onuma T, Chichibu S F, Uedono A, et al. Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques. J Appl Phys, 2004, 95:2495 doi: 10.1063/1.1644041
[21]
Gotoh H, Ando H, Takagahara T, et al. Effects of dimensionality on radiative recombination lifetime of excitons in thin quantum boxes of intermediate regime between zero and two dimensions. Jpn J Appl Phys, 1997, 36:4204 doi: 10.1143/JJAP.36.4204
[22]
Wei Q Y, Li T, Huang Y, et al. Compositional instability in InAlN/GaN lattice-matched epitaxy. Appl Phys Lett, 2012, 100:092101 doi: 10.1063/1.3690890
[23]
Kehagias Th, Dimitrakopulos G P, Kioseoglou J, et al. Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy. Appl Phys Lett, 2009, 95:071905 doi: 10.1063/1.3204454
[24]
Minj A, Cavalcoli D, Cavallini A. Indium segregation in AlInN/AlN/GaN heterostructures. Appl Phys Lett, 2010, 97:132114 doi: 10.1063/1.3489433
[25]
Miao Z L, Yu T J, Xu F J, et al. The origin and evolution of V-defects in InxAl1-xN epilayers grown by metalorganic chemical vapor deposition. Appl Phys Lett, 2009, 95:231909 doi: 10.1063/1.3272017
[26]
Song J, Xu F J, Yan X D, et al. High conductive gate leakage current channels induced by In segregation around screw-and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures. Appl Phys Lett, 2010, 97:232106 doi: 10.1063/1.3525713
[27]
Wu X H, Elsass C R, Abare A, et al. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 72:692 doi: 10.1063/1.120844
Fig. 1.  PL spectra of In$_{{\text{0}}{\text{.153}}}{\text{A}}{{\text{l}}_{{\text{0}}{\text{.847}}}}{\text{N}}$ epilayer measured at different temperatures.The circles are a guide for the eye

Fig. 2.  Temperature dependence of the integrated PL intensity of In$_{{\text{0}}{\text{.153}}}{\text{A}}{{\text{l}}_{{\text{0}}{\text{.847}}}}{\text{N}}$ epilayer.The solid squares are experimental data while the solid line is the fitting curve according to Eq.(1)

Fig. 3.  Peak position of emission energy of In$_{{\text{0}}{\text{.153}}}{\text{A}}{{\text{l}}_{{\text{0}}{\text{.847}}}}{\text{N}}$ extracted from measured spectra at different temperatures.Solid squares are the experiment data while the solid line is the fitting result according to Eqs.(5)and(6).The dashed and dotted lines are the fitting results according to Eqs.(4)and(2),respectively

Fig. 4.  Temporal response of PL emission measured at 6 K at the spectral peak position in an In$_{{\text{0}}{\text{.153}}}{\text{A}}{{\text{l}}_{{\text{0}}{\text{.847}}}}{\text{N}}$ epilayer.The dashed line is the experiment data while the solid line is the fitting result according to Eq.(7)

Fig. 5.  Binodal(solid)and spinodal(dashed)curves for the In$_x{\text{A}}{{\text{l}}_{\text{1}}}{{\text{ - }}_x}{\text{N}}$ system,calculated assuming a constant average value for the solid phase interaction parameter.The black circle corresponds to our In$_{{\text{0}}{\text{.153}}}{\text{A}}{{\text{l}}_{{\text{0}}{\text{.847}}}}{\text{N}}$ sample

[1]
Choi S, Kim H J, Kim S S, et al. Improvement of peak quantum efficiency and efficiency droop in Ⅲ-nitride visible light-emitting diodes with an InAlN electron-blocking layer. Appl Phys Lett, 2010, 96:221105 doi: 10.1063/1.3441373
[2]
Chen Z T, Sakai Y, Zhang J C, et al. Effect of strain on quantum efficiency of InAlN-based solar-blind photodiodes. Appl Phys Lett, 2009, 95:083504 doi: 10.1063/1.3213562
[3]
Ganguly S, Konar A, Hu Z Y, et al. Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors. Appl Phys Lett, 2012, 101:253519 doi: 10.1063/1.4773244
[4]
Berger C, Dadgar A, Bläsing J, et al. Growth of AlInN/AlGaN distributed Bragg reflectors for high quality microcavities. Phys Status Solidi C, 2012, 9:1253 doi: 10.1002/pssc.v9.5
[5]
Deĭbuk V G, Voznyĭ A V. Thermodynamic stability and redistribution of charges in ternary AlGaN, InGaN, and InAlN Alloys. Semiconductors, 2005, 39:623 doi: 10.1134/1.1944849
[6]
Ferhat M, Bechstedt F. First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys:relation to structural and thermodynamic properties. Phys Rev B, 2002, 65:075213 doi: 10.1103/PhysRevB.65.075213
[7]
Jones R E, Broesler R, Yu K M, et al. Band gap bowing parameter of In1-xAlxN. J Appl Phys, 2008, 104:123501 doi: 10.1063/1.3039509
[8]
Wang K, Martin R W, Amabile D, et al. Optical energies of AlInN epilayers. J Appl Phys, 2008, 103:073510 doi: 10.1063/1.2898533
[9]
Iliopoulos E, Adikimenakis A, Giesen C, et al. Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl Phys Lett, 2008, 92:191907 doi: 10.1063/1.2921783
[10]
Eliseev P G, Perlin P, Lee J, et al. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources. Appl Phys Lett, 1997, 71:569 doi: 10.1063/1.119797
[11]
Cho Y H, Gainer G H, Lam J B, et al. Dynamics of anomalous optical transitions in AlxGa1-xN alloys. Phys Rev B, 2000, 61:7203 doi: 10.1103/PhysRevB.61.7203
[12]
Li Q, Xu S J, Cheng W C, et al. Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys. Appl Phys Lett, 2001, 79:1810 doi: 10.1063/1.1403655
[13]
Kamimura J, Kishino K, Kikuchi A. Low-temperature photoluminescence studies of In-rich InAlN nanocolumns. Phys Status Solidi RRL, 2012, 6(3):123 doi: 10.1002/pssr.v6.3
[14]
Miao Z L, Yu T J, Xu F J, et al. Strain effects on InxAl1-xN crystalline quality grown on GaN templates by metalorganic chemical vapor deposition. J Appl Phys, 2010, 107:043515 doi: 10.1063/1.3305397
[15]
Bacher G, Hartmann C, Schweizer H, et al. Exciton dynamics in InxGa1-xAs/GaAs quantum-well heterostructures:competition between capture and thermal emission. Phys Rev B, 1993, 47:9545 doi: 10.1103/PhysRevB.47.9545
[16]
Varshni Y P. Temperature dependence of the energy gap in semiconductors. Physica, 1967, 34:149 doi: 10.1016/0031-8914(67)90062-6
[17]
Jiang L F, Shen W Z, Guo Q X. Temperature dependence of the optical properties of AlInN. J Appl Phys, 2009, 106:013515 doi: 10.1063/1.3160299
[18]
Xu Z Y, Lu Z D, Yuan Z L, et al. Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots. Superlattices Microstruct, 1998, 23:381 http://www.sciencedirect.com/science/article/pii/S0749603696901962#!
[19]
Onuma T, Chichibu S F, Uchinuma Y, et al. Recombination dynamics of localized excitons in Al1-xInxN epitaxial films on GaN templates grown by metalorganic vapor phase epitaxy. J Appl Phys, 2003, 94:2449 doi: 10.1063/1.1592868
[20]
Onuma T, Chichibu S F, Uedono A, et al. Radiative and nonradiative processes in strain-free AlxGa1-xN films studied by time-resolved photoluminescence and positron annihilation techniques. J Appl Phys, 2004, 95:2495 doi: 10.1063/1.1644041
[21]
Gotoh H, Ando H, Takagahara T, et al. Effects of dimensionality on radiative recombination lifetime of excitons in thin quantum boxes of intermediate regime between zero and two dimensions. Jpn J Appl Phys, 1997, 36:4204 doi: 10.1143/JJAP.36.4204
[22]
Wei Q Y, Li T, Huang Y, et al. Compositional instability in InAlN/GaN lattice-matched epitaxy. Appl Phys Lett, 2012, 100:092101 doi: 10.1063/1.3690890
[23]
Kehagias Th, Dimitrakopulos G P, Kioseoglou J, et al. Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy. Appl Phys Lett, 2009, 95:071905 doi: 10.1063/1.3204454
[24]
Minj A, Cavalcoli D, Cavallini A. Indium segregation in AlInN/AlN/GaN heterostructures. Appl Phys Lett, 2010, 97:132114 doi: 10.1063/1.3489433
[25]
Miao Z L, Yu T J, Xu F J, et al. The origin and evolution of V-defects in InxAl1-xN epilayers grown by metalorganic chemical vapor deposition. Appl Phys Lett, 2009, 95:231909 doi: 10.1063/1.3272017
[26]
Song J, Xu F J, Yan X D, et al. High conductive gate leakage current channels induced by In segregation around screw-and mixed-type threading dislocations in lattice-matched InxAl1-xN/GaN heterostructures. Appl Phys Lett, 2010, 97:232106 doi: 10.1063/1.3525713
[27]
Wu X H, Elsass C R, Abare A, et al. Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells. Appl Phys Lett, 1998, 72:692 doi: 10.1063/1.120844
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2380 Times PDF downloads: 18 Times Cited by: 0 Times

    History

    Received: 12 March 2014 Revised: 18 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Li, Peng Jin, Weiying Wang, Defeng Mao, Guipeng Liu, Zhanguo Wang, Jiaming Wang, Fujun Xu, Bo Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys[J]. Journal of Semiconductors, 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001 W Li, P Jin, W Y Wang, D F Mao, G P Liu, Z G Wang, J M Wang, F J Xu, B Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys[J]. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001.Export: BibTex EndNote
      Citation:
      Wei Li, Peng Jin, Weiying Wang, Defeng Mao, Guipeng Liu, Zhanguo Wang, Jiaming Wang, Fujun Xu, Bo Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys[J]. Journal of Semiconductors, 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001

      W Li, P Jin, W Y Wang, D F Mao, G P Liu, Z G Wang, J M Wang, F J Xu, B Shen. Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys[J]. J. Semicond., 2014, 35(9): 093001. doi: 10.1088/1674-4926/35/9/093001.
      Export: BibTex EndNote

      Anomalous temperature-dependent photoluminescence peak energy in InAlN alloys

      doi: 10.1088/1674-4926/35/9/093001
      Funds:

      the National Basic Research Program of China 2012CB619306

      Project supported by the National Basic Research Program of China (No. 2012CB619306)

      More Information
      • Corresponding author: Li Wei, Email:livy@semi.ac.cn; Jin Peng, Email:pengjin@semi.ac.cn
      • Received Date: 2014-03-12
      • Revised Date: 2014-03-18
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return