SEMICONDUCTOR INTEGRATED CIRCUITS

A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs

Wenbo Wang1, Luhong Mao1, , Xindong Xiao2, Shilin Zhang1 and Sheng Xie1

+ Author Affiliations

 Corresponding author: Mao Luhong, Email:lhmao@tju.edu.cn

PDF

Abstract: A differential automatic gain control (AGC) circuit is presented. The AGC architecture contains two-stage variable gain amplifiers (VGAs) which are implemented with a Gilbert cell, a peak detector (PD), a low pass filter, an operational amplifier, and two voltage to current (V-I) convertors. One stage VGA achieves 30 dB gain due to the use of active load. The AGC circuit is implemented in UMC 0.18-μm single-poly six-metal CMOS process technology. Measurement results show that the final differential output swing of the 2nd stage VGA is about 0.9-Vpp; the total gain of the two VGAs can be varied linearly from-10 to 50 dB when the control voltage varies from 0.3 to 0.9 V. The final circuit (containing output buffers and a band-gap reference) consumes 37 mA from single 1.8 V voltage supply. For a 50 mV amplitude 60% modulation depth input AM signal it needs 100 μs to stabilize the output. The frequency response of the circuit has almost a constant-3 dB bandwidth of 2.2 MHz. Its OIP3 result is at 19 dBm.

Key words: automatic gain controlvariable gain amplifierexponential V-I convertorpeak detectorgain dynamic range



[1]
Zhou M, Fan C, Chen D, et al. A compact automatic gain control loop for GNSS RF receiver. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 2010:284
[2]
Calvo B, Sanz M T, Celma S. Low-voltage low-power CMOS programmable gain amplifier. 6th International Caribbean Conference on Devices, Circuits and Systems, Playa del Carmen, Mexico, 2006:101 http://onlinepresent.org/proceedings/vol25_2013/20.pdf
[3]
Lin Y T, Chen C H, Lu S S. A feed-forward automatic-gain control amplifier for biomedical applications. Asia-Pacific Microwave Conference Proceedings, Bangkok, Thailand, 2007 http://www.nsfc.gov.cn/Portals/0/fj/fj20160106_01.xls
[4]
Lei Qianqian, Lin Min, Chen Zhiming, et al. A programmable gain amplifier with a DC offset calibration loop for a direct-conversion WLAN transceiver. Journal of Semiconductors, 2011, 32(4):045006 doi: 10.1088/1674-4926/32/4/045006
[5]
Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. Journal of Semiconductors, 2012, 33(5):055006 doi: 10.1088/1674-4926/33/5/055006
[6]
Wang X, Chi B, Wang Z. A low-power high-data-rate ASK IF receiver with a digital-control AGC loop. IEEE Trans Circuits Syst, 2010, 57(8):617 doi: 10.1109/TCSII.2010.2050954
[7]
Khoury J M. On the design of constant settling time AGC circuits. IEEE Trans Circuits Syst Ⅱ:Analog and Digital Signal Processing, 1998, 45(3):283 doi: 10.1109/82.664234
[8]
Jeon O, Fox R M, Myers B A. Analog AGC circuitry for a CMOS WLAN receiver. IEEE J Solid-State Circuits, 2006, 41(10):2291 doi: 10.1109/JSSC.2006.881548
[9]
Park S B, Wilson J E, Ismail M. The chip-peak detectors for multistandard wireless receivers. IEEE Circuits and Devices Magazine, 2006, 22(6):6 doi: 10.1109/MCD.2006.307270
[10]
Cheung H Y, Cheung K S, Lau J. A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering. IEEE International Symposium on Circuits and Systems, Sydney, NSW, Australia, 2001:390 http://cc.ee.nchu.edu.tw/~aiclab/public_htm/Analog/Theses/2000Cheung.pdf
[11]
Duong Q H, Nguyen T K, Duong H N, et al. dB-linear V-I converter using composite NMOS transistor. Proceedings of the 15th International Conference on Microelectronics, Cairo, Egypt, 2003:409 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1287710&filter%3DAND%28p_IS_Number%3A28700%29
[12]
Ta C M, Yong C H, Yeoh W G. A 2.7 mW, 0.064 mm2 linear-in-dB VGA with 60 dB tuning range, 100 MHz bandwidth, and two DC offset cancellation loops. IEEE International Workshop on Radio-Frequency Integration Technology, Singapore, 2005:74 doi: 10.1007/s11277-016-3186-z
[13]
Kucharski D, Kornegay K T. Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier. IEEE Trans Microw Theory Tech, 2005, 53(2):590 doi: 10.1109/TMTT.2004.840731
Fig. 1.  The AGC locates in an RFID direct-down receiver architecture.

Fig. 2.  AGC loop architecture.

Fig. 3.  VGA schematic.

Fig. 4.  Differential positive peak detector.

Fig. 5.  Exponential $V$$I$ convertor schematic.

Fig. 6.  Simulated gain tuning curve with two stages VGA at 2 MHz input AC signal.

Fig. 7.  Die photo of the analog AGC circuit.

Fig. 8.  Measured frequency responses with the control voltage change.

Fig. 9.  Measured output amplitude.

Fig. 10.  Measured AGC setup process and setting time.

Fig. 11.  Measured IIP3 and OIP3 results.

Table 1.   Comparison of AGC performance.

[1]
Zhou M, Fan C, Chen D, et al. A compact automatic gain control loop for GNSS RF receiver. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, China, 2010:284
[2]
Calvo B, Sanz M T, Celma S. Low-voltage low-power CMOS programmable gain amplifier. 6th International Caribbean Conference on Devices, Circuits and Systems, Playa del Carmen, Mexico, 2006:101 http://onlinepresent.org/proceedings/vol25_2013/20.pdf
[3]
Lin Y T, Chen C H, Lu S S. A feed-forward automatic-gain control amplifier for biomedical applications. Asia-Pacific Microwave Conference Proceedings, Bangkok, Thailand, 2007 http://www.nsfc.gov.cn/Portals/0/fj/fj20160106_01.xls
[4]
Lei Qianqian, Lin Min, Chen Zhiming, et al. A programmable gain amplifier with a DC offset calibration loop for a direct-conversion WLAN transceiver. Journal of Semiconductors, 2011, 32(4):045006 doi: 10.1088/1674-4926/32/4/045006
[5]
Li Guofeng, Wu Nanjian. A low power flexible PGA for software defined radio systems. Journal of Semiconductors, 2012, 33(5):055006 doi: 10.1088/1674-4926/33/5/055006
[6]
Wang X, Chi B, Wang Z. A low-power high-data-rate ASK IF receiver with a digital-control AGC loop. IEEE Trans Circuits Syst, 2010, 57(8):617 doi: 10.1109/TCSII.2010.2050954
[7]
Khoury J M. On the design of constant settling time AGC circuits. IEEE Trans Circuits Syst Ⅱ:Analog and Digital Signal Processing, 1998, 45(3):283 doi: 10.1109/82.664234
[8]
Jeon O, Fox R M, Myers B A. Analog AGC circuitry for a CMOS WLAN receiver. IEEE J Solid-State Circuits, 2006, 41(10):2291 doi: 10.1109/JSSC.2006.881548
[9]
Park S B, Wilson J E, Ismail M. The chip-peak detectors for multistandard wireless receivers. IEEE Circuits and Devices Magazine, 2006, 22(6):6 doi: 10.1109/MCD.2006.307270
[10]
Cheung H Y, Cheung K S, Lau J. A low power monolithic AGC with automatic DC offset cancellation for direct conversion hybrid CDMA transceiver used in telemetering. IEEE International Symposium on Circuits and Systems, Sydney, NSW, Australia, 2001:390 http://cc.ee.nchu.edu.tw/~aiclab/public_htm/Analog/Theses/2000Cheung.pdf
[11]
Duong Q H, Nguyen T K, Duong H N, et al. dB-linear V-I converter using composite NMOS transistor. Proceedings of the 15th International Conference on Microelectronics, Cairo, Egypt, 2003:409 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1287710&filter%3DAND%28p_IS_Number%3A28700%29
[12]
Ta C M, Yong C H, Yeoh W G. A 2.7 mW, 0.064 mm2 linear-in-dB VGA with 60 dB tuning range, 100 MHz bandwidth, and two DC offset cancellation loops. IEEE International Workshop on Radio-Frequency Integration Technology, Singapore, 2005:74 doi: 10.1007/s11277-016-3186-z
[13]
Kucharski D, Kornegay K T. Jitter considerations in the design of a 10-Gb/s automatic gain control amplifier. IEEE Trans Microw Theory Tech, 2005, 53(2):590 doi: 10.1109/TMTT.2004.840731
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2944 Times PDF downloads: 27 Times Cited by: 0 Times

    History

    Received: 07 May 2012 Revised: 29 August 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wenbo Wang, Luhong Mao, Xindong Xiao, Shilin Zhang, Sheng Xie. A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs[J]. Journal of Semiconductors, 2013, 34(2): 025008. doi: 10.1088/1674-4926/34/2/025008 W B Wang, L H Mao, X D Xiao, S L Zhang, S Xie. A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs[J]. J. Semicond., 2013, 34(2): 025008. doi: 10.1088/1674-4926/34/2/025008.Export: BibTex EndNote
      Citation:
      Wenbo Wang, Luhong Mao, Xindong Xiao, Shilin Zhang, Sheng Xie. A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs[J]. Journal of Semiconductors, 2013, 34(2): 025008. doi: 10.1088/1674-4926/34/2/025008

      W B Wang, L H Mao, X D Xiao, S L Zhang, S Xie. A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs[J]. J. Semicond., 2013, 34(2): 025008. doi: 10.1088/1674-4926/34/2/025008.
      Export: BibTex EndNote

      A differential automatic gain control circuit with two-stage-10 to 50 dB tuning range VGAs

      doi: 10.1088/1674-4926/34/2/025008
      Funds:

      the National High Technology Research and Development Program of China 2008AA04A102

      Project supported by the National High Technology Research and Development Program of China (No. 2008AA04A102)

      More Information
      • Corresponding author: Mao Luhong, Email:lhmao@tju.edu.cn
      • Received Date: 2012-05-07
      • Revised Date: 2012-08-29
      • Published Date: 2013-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return