SEMICONDUCTOR PHYSICS

Optical properties of GaAs

J.O. Akinlami and A.O. Ashamu

+ Author Affiliations

 Corresponding author: J. O. Akinlami, Email:johnsonak2000@yahoo.co.uk

PDF

Abstract: We have investigated the optical properties of gallium arsenide (GaAs) in the photon energy range 0.6-6.0 eV. We obtained a refractive index which has a maximum value of 5.0 at a photon energy of 3.1 eV; an extinction coefficient which has a maximum value of 4.2 at a photon energy of 5.0 eV; the dielectric constant, the real part of the complex dielectric constant has a maximum value of 24 at a photon energy of 2.8 eV and the imaginary part of the complex dielectric constant has a maximum value of 26.0 at a photon energy of 4.8 eV; the transmittance which has a maximum value of 0.22 at a photon energy of 4.0 eV; the absorption coefficient which has a maximum value of 0.22×108 m-1 at a photon energy of 4.8 eV, the reflectance which has a maximum value of 0.68 at 5.2eV; the reflection coefficient which has a maximum value of 0.82 at a photon energy of 5.2 eV; the real part of optical conductivity has a maximum value of 14.2×1015 at 4.8 eV and the imaginary part of the optical conductivity has a maximum value of 6.8×1015 at 5.0 eV. The values obtained for the optical properties of GaAs are in good agreement with other results.

Key words: complex index of refractionextinction coefficientcomplex dielectric constanttransmittanceabsorption coefficientsemiconductor and photon energy



[1]
Sze S M. Physics of semiconductor devices. New York:Wiley, 1969 http://adsabs.harvard.edu/abs/1981psd..book.....S
[2]
Beliles R P. The metals. In:Clayton G D, Clayton F E, ed. Patty's industrial hygiene and toxicology. Vol. 26. 4th ed. New York:John Wiley and Sons, 1994:1879 http://www.cqvip.com/QK/94689X/201303/45044662.html
[3]
Sabot J L, Lauvray H. Gallium and gallium compounds. In:Kroschwitz J I, Howe-Grant M, ed. Kirk-Othmer encyclopedia of chemical technology. 4th ed. Vol. 12. New York:John Wiley and Sons, 1994:299
[4]
Goldschmidt V M. Crystal structure and chemical constitution. Trans Faraday Soc, 1929, 25:253 doi: 10.1039/tf9292500253
[5]
Tibermacine T, Mercizga A. Revue des energies renouvelables, 2009, 12(1):125
[6]
Sze S M, Ng K K. Physics of semiconductor devices. 3rd ed. John Wiley and Sons, Inc., 2007
[7]
Jovanovic D, Gajic R, Hingerl K. Optical properties of GaAs 2D Archimedean photonic lattice tiling with the p4g symmetry. Science of Sintering, 2008, 40:167 doi: 10.2298/SOS0802167J
[8]
Ghosh C, Pal S, Goswami B, et al. Theoretical study of the electronic structure of GaAs nanotubes. J Phys Chem C, 2007, 111:12284 doi: 10.1021/jp0746695
[9]
Ng K K. Complete guide to semiconductor device. 2nd ed. New York:Wiley, 2002
[10]
Colombo C, Hei M, Gratzel M, et al. Gallium arsenide P-I-N radial structures for photovoltaic applications. Appl Phys Lett, 2009, 94:173108 doi: 10.1063/1.3125435
[11]
Kendall E J M. Transistors. New York:Pergamon Press, 1969
[12]
Wallmark J T. Field-effect transistors, physics, technology and applications. Prentice-Hall, Englewood Cliff, 1966
[13]
Liou J J, Schwierz F. RF MOSFET:recent advances, current status and future trends. Solid-State Electron, 2003, 47:1881 doi: 10.1016/S0038-1101(03)00225-9
[14]
Chakrabarti N B. GaAs integrated circuits. J Inst Electron Telecommun Eng, 1992, 38:163
[15]
Greber J F. Gallium and gallium compounds. In:Ullmann's encyclopedia of industrial chemistry. 6th Rev. ed. Vol. 15. Weinheim, Wiley-VCH Verlag GmbH and CO., 2003:235 http://www.cqvip.com/QK/94689X/201303/45044662.html
[16]
Fox M. Optical properties of solids. Oxford University Press, 2001:3 doi: 10.1119/1.1987434
[17]
Yu P Y, Cardona M. Fundamentals of semiconductors. Berlin:Springer-Verlag, 1996
[18]
Schubert E F. Refractive index and extinction coefficient of materials. 2004. http://www.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf
[19]
Goswami A. Thin film fundamentals. New Delhi:New Age International, 2005 https://www.ncbi.nlm.nih.gov/pubmed/21928861
[20]
Sharma P, Katyal S C. Determination of optical parameters of a-(As2Se3)90Ge10 thin film. J Phys D:Appl Phys, 2007, 40:2115 doi: 10.1088/0022-3727/40/7/038
[21]
Blakemore J S. Semiconducting and other major properties of gallium arsenide. J Appl Phys, 1982, 53:10 doi: 10.1063/1.331665
[22]
Brian R B, Richard A S, Jesus A D. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 1990, 26(1):113 doi: 10.1109/3.44924
[23]
De Boeij P L, Wijers C M J. Ab initio calculations of the reflectance anisotropy of GaAs (110):the role of nonlocal polarizability and local fields. Phys Lett A, 2000, 272:264 doi: 10.1016/S0375-9601(00)00427-8
[24]
Lautenschlager P, Garriga M, Logothetidis M. Interband critical points of GaAs and their temperature dependence. Cardona Phys Rev B, 1987, 35:9174 doi: 10.1103/PhysRevB.35.9174
[25]
Alouani M, Brey L, Christensen N E. Calculated optical properties of semiconductors. Phys Rev B, 1988, 37(3):1167 doi: 10.1103/PhysRevB.37.1167
[26]
Sturge M D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys Rev, 1962, 127(3):768 doi: 10.1103/PhysRev.127.768
[27]
Aloulou S, Fathallah M, Oueslati M, et al. Determination of absorption coefficients and thermal diffusivity of modulated doped GaAlAs/GaAs heterostructure by photothermal deflection spectroscopy. American Journal of Applied Sciences, 2005, 2(10):1412 doi: 10.3844/ajassp.2005.1412.1417
[28]
Holm R T, Gibson J W, Palik E D. Infrared reflectance studies of bulk and epitaxial-film n-type GaAs. J Appl Phys, 1977, 48:212 doi: 10.1063/1.323322
[29]
El-Nahass M M, Youssef S B, Ali H A M. Optical properties of Zn doped GaAs single crystals. J Optoelectron Adv Mater, 2011, 13(1):76
[30]
Phillip H R, Ehrenreich H. optical properties of semiconductors. Phys Rev, 1963, 129:1550 doi: 10.1103/PhysRev.129.1550
Fig. 1.  Refractive index of GaAs.

Fig. 2.  Extinction coefficient of GaAs.

Fig. 3.  Complex dielectric constant (real part) of GaAs.

Fig. 4.  Complex dielectric constant (imaginary part) of GaAs.

Fig. 5.  Transmittance of GaAs.

Fig. 6.  Absorption coefficient of GaAs.

Fig. 7.  Reflection coefficient of GaAs.

Fig. 8.  Reflectance of GaAs.

Fig. 9.  Optical conductivity (real part) of GaAs.

Fig. 10.  Optical conductivity (imaginary part) of GaAs.

[1]
Sze S M. Physics of semiconductor devices. New York:Wiley, 1969 http://adsabs.harvard.edu/abs/1981psd..book.....S
[2]
Beliles R P. The metals. In:Clayton G D, Clayton F E, ed. Patty's industrial hygiene and toxicology. Vol. 26. 4th ed. New York:John Wiley and Sons, 1994:1879 http://www.cqvip.com/QK/94689X/201303/45044662.html
[3]
Sabot J L, Lauvray H. Gallium and gallium compounds. In:Kroschwitz J I, Howe-Grant M, ed. Kirk-Othmer encyclopedia of chemical technology. 4th ed. Vol. 12. New York:John Wiley and Sons, 1994:299
[4]
Goldschmidt V M. Crystal structure and chemical constitution. Trans Faraday Soc, 1929, 25:253 doi: 10.1039/tf9292500253
[5]
Tibermacine T, Mercizga A. Revue des energies renouvelables, 2009, 12(1):125
[6]
Sze S M, Ng K K. Physics of semiconductor devices. 3rd ed. John Wiley and Sons, Inc., 2007
[7]
Jovanovic D, Gajic R, Hingerl K. Optical properties of GaAs 2D Archimedean photonic lattice tiling with the p4g symmetry. Science of Sintering, 2008, 40:167 doi: 10.2298/SOS0802167J
[8]
Ghosh C, Pal S, Goswami B, et al. Theoretical study of the electronic structure of GaAs nanotubes. J Phys Chem C, 2007, 111:12284 doi: 10.1021/jp0746695
[9]
Ng K K. Complete guide to semiconductor device. 2nd ed. New York:Wiley, 2002
[10]
Colombo C, Hei M, Gratzel M, et al. Gallium arsenide P-I-N radial structures for photovoltaic applications. Appl Phys Lett, 2009, 94:173108 doi: 10.1063/1.3125435
[11]
Kendall E J M. Transistors. New York:Pergamon Press, 1969
[12]
Wallmark J T. Field-effect transistors, physics, technology and applications. Prentice-Hall, Englewood Cliff, 1966
[13]
Liou J J, Schwierz F. RF MOSFET:recent advances, current status and future trends. Solid-State Electron, 2003, 47:1881 doi: 10.1016/S0038-1101(03)00225-9
[14]
Chakrabarti N B. GaAs integrated circuits. J Inst Electron Telecommun Eng, 1992, 38:163
[15]
Greber J F. Gallium and gallium compounds. In:Ullmann's encyclopedia of industrial chemistry. 6th Rev. ed. Vol. 15. Weinheim, Wiley-VCH Verlag GmbH and CO., 2003:235 http://www.cqvip.com/QK/94689X/201303/45044662.html
[16]
Fox M. Optical properties of solids. Oxford University Press, 2001:3 doi: 10.1119/1.1987434
[17]
Yu P Y, Cardona M. Fundamentals of semiconductors. Berlin:Springer-Verlag, 1996
[18]
Schubert E F. Refractive index and extinction coefficient of materials. 2004. http://www.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf
[19]
Goswami A. Thin film fundamentals. New Delhi:New Age International, 2005 https://www.ncbi.nlm.nih.gov/pubmed/21928861
[20]
Sharma P, Katyal S C. Determination of optical parameters of a-(As2Se3)90Ge10 thin film. J Phys D:Appl Phys, 2007, 40:2115 doi: 10.1088/0022-3727/40/7/038
[21]
Blakemore J S. Semiconducting and other major properties of gallium arsenide. J Appl Phys, 1982, 53:10 doi: 10.1063/1.331665
[22]
Brian R B, Richard A S, Jesus A D. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J Quantum Electron, 1990, 26(1):113 doi: 10.1109/3.44924
[23]
De Boeij P L, Wijers C M J. Ab initio calculations of the reflectance anisotropy of GaAs (110):the role of nonlocal polarizability and local fields. Phys Lett A, 2000, 272:264 doi: 10.1016/S0375-9601(00)00427-8
[24]
Lautenschlager P, Garriga M, Logothetidis M. Interband critical points of GaAs and their temperature dependence. Cardona Phys Rev B, 1987, 35:9174 doi: 10.1103/PhysRevB.35.9174
[25]
Alouani M, Brey L, Christensen N E. Calculated optical properties of semiconductors. Phys Rev B, 1988, 37(3):1167 doi: 10.1103/PhysRevB.37.1167
[26]
Sturge M D. Optical absorption of gallium arsenide between 0.6 and 2.75 eV. Phys Rev, 1962, 127(3):768 doi: 10.1103/PhysRev.127.768
[27]
Aloulou S, Fathallah M, Oueslati M, et al. Determination of absorption coefficients and thermal diffusivity of modulated doped GaAlAs/GaAs heterostructure by photothermal deflection spectroscopy. American Journal of Applied Sciences, 2005, 2(10):1412 doi: 10.3844/ajassp.2005.1412.1417
[28]
Holm R T, Gibson J W, Palik E D. Infrared reflectance studies of bulk and epitaxial-film n-type GaAs. J Appl Phys, 1977, 48:212 doi: 10.1063/1.323322
[29]
El-Nahass M M, Youssef S B, Ali H A M. Optical properties of Zn doped GaAs single crystals. J Optoelectron Adv Mater, 2011, 13(1):76
[30]
Phillip H R, Ehrenreich H. optical properties of semiconductors. Phys Rev, 1963, 129:1550 doi: 10.1103/PhysRev.129.1550
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 11193 Times PDF downloads: 407 Times Cited by: 0 Times

    History

    Received: 03 September 2012 Revised: Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs[J]. Journal of Semiconductors, 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002 J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs[J]. J. Semicond., 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002.Export: BibTex EndNote
      Citation:
      J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs[J]. Journal of Semiconductors, 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002

      J.O. Akinlami, A.O. Ashamu. Optical properties of GaAs[J]. J. Semicond., 2013, 34(3): 032002. doi: 10.1088/1674-4926/34/3/032002.
      Export: BibTex EndNote

      Optical properties of GaAs

      doi: 10.1088/1674-4926/34/3/032002
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return