SEMICONDUCTOR TECHNOLOGY

The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures

Shaoxi Wang1, 2, , Dan Feng1, Chenxia Hu3 and P. Rezai2

+ Author Affiliations

 Corresponding author: Shaoxi Wang, Email: shxwang@nwpu.edu.cn

PDF

Turn off MathJax

Abstract: High aspect ratio units are necessary parts of complex microstructures in microfluidic devices. Some methods that are available to achieve a high aspect ratio require expensive materials or complex chemical processes; for other methods it is difficult to reach simple high aspect ratio structures, which need supporting structures. The paper presents a simple and cheap two-step Polydimethylsioxane (PDMS) transferring process to get high aspect ratio single pillars, which only requires covering the PDMS mold with a Brij@52 surface solution after getting a relative PDMS mold based on an SU8 mold. The experimental results demonstrate the method efficiency and effectiveness.

Key words: high aspectmicrofluidic chipmicrostructures



[1]
https://en.wikipedia.org/wiki/Polydimethylsiloxane
[2]
McDonald J C, Whitesides G M. Polydimethylsiloxane as a material for fabricating microfluidic devices. Acc Chem Res, 2002, 35(7): 491 doi: 10.1021/ar010110q
[3]
Friese C, Werber A, Krogmann F, et al. Materials effects and components for tunable micro-optics. IEEE Trans Electr Electron Eng, 2007, 2(3): 232 doi: 10.1002/(ISSN)1931-4981
[4]
Nguyen N T. Micro-optofluidic lenses: a review. Biomicrofluidics, 2010, 4(3): 031501 doi: 10.1063/1.3460392
[5]
Shao G C, Wu J H, Cai Z L, et al. Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique. Sens Actuators A, 2012, 178(5): 230
[6]
Lee T R, Chung K O, Chang Y S, et al. Resonant behavior and microfluidic manipulation of silicone cilia due to an added mass effect. Soft Matter, 2011, 7(9): 4325 doi: 10.1039/c0sm01294g
[7]
Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir, 2005, 21(19): 8978 doi: 10.1021/la050316q
[8]
Gitlin L, Schulze P, Belder D. Rapid replication of master structures by double casting with PDMS. Lab on a Chip, 2009, 9(20): 3000 doi: 10.1039/b904684d
[9]
Natarajan S, Chang-yen D A, Gale B L. Large-area, high aspect ratio SU-8 molds for the fabrication of PDMS microfluidic devices. J Micromechan Microeng, 2008, 18(4): 045021 doi: 10.1088/0960-1317/18/4/045021
[10]
Paek J, Kim J. Microsphere assisted fabrication of high aspect ratio elastomeric micropillars and waveguides. Nat Commun, 2014, 5(5): 3324
[11]
Sasoglu F M, Bohl A J, Layton B E. Design and microfabrication of a high aspect ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J Micromechan Microeng, 2007, 17(3): 623 doi: 10.1088/0960-1317/17/3/027
[12]
vanKan J A, Wang L P, Shao P G, et al. High aspect ratio PDMS replication through proton beam fabricated Ni masters. Nucl Instrum Methods Phys Res B, 2007, 260(1): 353 doi: 10.1016/j.nimb.2007.02.046
[13]
Sitti M. High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, 2(2): 886
[14]
Chandra D, Taylor J A, Yang S. Replica molding of high aspect ratio (sub-) micro hydrogel pillar arrays and their stability in air and solvents. Soft Matter, 2008, 4(5): 979 doi: 10.1039/b717711a
[15]
Hung P J, Lee P J, Sabounchi P, et al. A novel high aspect ratio microfluidic degsin to provide a stable and uniform microenviroment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip, 2005, 5: 44 doi: 10.1039/b410743h
[16]
Kung Y C, Huang K W, Fan Y J, et al. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Lab on a Chip, 2015, 15(8): 1861 doi: 10.1039/C4LC01211A
[17]
Cusachs P R, Rico F, Martinez E, et al. Stability of microfabricated high aspect ratio structures in Poly(dimethylsiloxane). Langmuir, 2005, 21(12): 5524 doi: 10.1021/la050252j
[18]
Sia S K, Whitesides G M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21): 3563-3576 doi: 10.1002/(ISSN)1522-2683
[19]
McDonald J C, Whitesides G M. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res, 2002, 35(7): 491 doi: 10.1021/ar010110q
Fig. 1.  (Color online) The simple two-step PDMS transferring process.

Fig. 2.  The final PDMS chip microstructure.

Fig. 3.  (Color online) The measurement results of the pillar sizes in PDMS device.

Fig. 4.  (Color online) The results for test thickness of SU8 mold.

Fig. 5.  (Color online) (a) The test chip based on a dry mold. (b) The test chip based on a wet mold.

Table 1.   Experimental results with aspect ratio.

Parameter Experimental results
Width (μm) 5 5 10 10 15 20
Length (μm) 5 10 15 20 15 20
Aspect ratio 6 7 12 15 18 25
DownLoad: CSV
[1]
https://en.wikipedia.org/wiki/Polydimethylsiloxane
[2]
McDonald J C, Whitesides G M. Polydimethylsiloxane as a material for fabricating microfluidic devices. Acc Chem Res, 2002, 35(7): 491 doi: 10.1021/ar010110q
[3]
Friese C, Werber A, Krogmann F, et al. Materials effects and components for tunable micro-optics. IEEE Trans Electr Electron Eng, 2007, 2(3): 232 doi: 10.1002/(ISSN)1931-4981
[4]
Nguyen N T. Micro-optofluidic lenses: a review. Biomicrofluidics, 2010, 4(3): 031501 doi: 10.1063/1.3460392
[5]
Shao G C, Wu J H, Cai Z L, et al. Fabrication of elastomeric high-aspect-ratio microstructures using polydimethylsiloxane (PDMS) double casting technique. Sens Actuators A, 2012, 178(5): 230
[6]
Lee T R, Chung K O, Chang Y S, et al. Resonant behavior and microfluidic manipulation of silicone cilia due to an added mass effect. Soft Matter, 2011, 7(9): 4325 doi: 10.1039/c0sm01294g
[7]
Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting. Langmuir, 2005, 21(19): 8978 doi: 10.1021/la050316q
[8]
Gitlin L, Schulze P, Belder D. Rapid replication of master structures by double casting with PDMS. Lab on a Chip, 2009, 9(20): 3000 doi: 10.1039/b904684d
[9]
Natarajan S, Chang-yen D A, Gale B L. Large-area, high aspect ratio SU-8 molds for the fabrication of PDMS microfluidic devices. J Micromechan Microeng, 2008, 18(4): 045021 doi: 10.1088/0960-1317/18/4/045021
[10]
Paek J, Kim J. Microsphere assisted fabrication of high aspect ratio elastomeric micropillars and waveguides. Nat Commun, 2014, 5(5): 3324
[11]
Sasoglu F M, Bohl A J, Layton B E. Design and microfabrication of a high aspect ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing. J Micromechan Microeng, 2007, 17(3): 623 doi: 10.1088/0960-1317/17/3/027
[12]
vanKan J A, Wang L P, Shao P G, et al. High aspect ratio PDMS replication through proton beam fabricated Ni masters. Nucl Instrum Methods Phys Res B, 2007, 260(1): 353 doi: 10.1016/j.nimb.2007.02.046
[13]
Sitti M. High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003, 2(2): 886
[14]
Chandra D, Taylor J A, Yang S. Replica molding of high aspect ratio (sub-) micro hydrogel pillar arrays and their stability in air and solvents. Soft Matter, 2008, 4(5): 979 doi: 10.1039/b717711a
[15]
Hung P J, Lee P J, Sabounchi P, et al. A novel high aspect ratio microfluidic degsin to provide a stable and uniform microenviroment for cell growth in a high throughput mammalian cell culture array. Lab on a Chip, 2005, 5: 44 doi: 10.1039/b410743h
[16]
Kung Y C, Huang K W, Fan Y J, et al. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp. Lab on a Chip, 2015, 15(8): 1861 doi: 10.1039/C4LC01211A
[17]
Cusachs P R, Rico F, Martinez E, et al. Stability of microfabricated high aspect ratio structures in Poly(dimethylsiloxane). Langmuir, 2005, 21(12): 5524 doi: 10.1021/la050252j
[18]
Sia S K, Whitesides G M. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis, 2003, 24(21): 3563-3576 doi: 10.1002/(ISSN)1522-2683
[19]
McDonald J C, Whitesides G M. Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res, 2002, 35(7): 491 doi: 10.1021/ar010110q
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4734 Times PDF downloads: 125 Times Cited by: 0 Times

    History

    Received: 21 November 2017 Revised: 29 December 2017 Online: Accepted Manuscript: 04 April 2018Uncorrected proof: 12 April 2018Published: 09 August 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shaoxi Wang, Dan Feng, Chenxia Hu, P. Rezai. The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures[J]. Journal of Semiconductors, 2018, 39(8): 086001. doi: 10.1088/1674-4926/39/8/086001 S X Wang, D Feng, C X Hu, P Rezai, The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures[J]. J. Semicond., 2018, 39(8): 086001. doi: 10.1088/1674-4926/39/8/086001.Export: BibTex EndNote
      Citation:
      Shaoxi Wang, Dan Feng, Chenxia Hu, P. Rezai. The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures[J]. Journal of Semiconductors, 2018, 39(8): 086001. doi: 10.1088/1674-4926/39/8/086001

      S X Wang, D Feng, C X Hu, P Rezai, The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures[J]. J. Semicond., 2018, 39(8): 086001. doi: 10.1088/1674-4926/39/8/086001.
      Export: BibTex EndNote

      The simple two-step polydimethylsiloxane transferring process for high aspect ratio microstructures

      doi: 10.1088/1674-4926/39/8/086001
      Funds:

      Project supported by the Natural Science Foundation of Shenzhen (No. JCYJ20160429153110908) and the Science and Technology Development Program of Shaanxi Province (No. 2016GY-091).

      More Information
      • Corresponding author: Email: shxwang@nwpu.edu.cn
      • Received Date: 2017-11-21
      • Revised Date: 2017-12-29
      • Published Date: 2018-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return