SEMICONDUCTOR DEVICES

Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning

Xiao Chi1, Changbai Liu2, Jinbao Zhang1, Li Liu1, , Haiying Li1, Yue He1, Xiaoqing Bo1 and Lili Liu1

+ Author Affiliations

 Corresponding author: Liu Li, Email:liul99@jlu.edu.cn

PDF

Abstract: The pristine In2O3 nanotubes were synthesized by electrospinning and subsequent calcination. Scanning electron microscope, X-ray powder diffraction and transmission electron micrograph were employed to analyze the morphology and crystal structure of the as-synthesized nanotubes. Gas-sensing properties of the as-synthesized In2O3 nanotubes were investigated by exposing the corresponding sensors to toluene, acetone, ethanol, formaldehyde, ammonia and carbon monoxide at 340℃. The results show that the gas sensor possesses a good selectivity to toluene at 340℃. The response of the In2O3 nanotube gas sensor to 40 ppm is about 5.88. The response and recovery times are about 3 s and 17 s, respectively.

Key words: In2O3nanotubetoluenegas sensor



[1]
Pramod N G, Pandey S N, Sahay P P. Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films. Ceramics International, 2012, 38:4151 doi: 10.1016/j.ceramint.2012.01.075
[2]
Zhao Wenjie, Shi Yunbo, Xiu Debin, et al. Sensitive properties of In-based compound semiconductor oxide to Cl2 gas. Journal of Semiconductors, 2009, 30(3):034010 doi: 10.1088/1674-4926/30/3/034010
[3]
Sun Peng, Hu Ming, Li Mingda, et al. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor. Journal of Semiconductors, 2012, 33(5):054012 doi: 10.1088/1674-4926/33/5/054012
[4]
Shim H S, Kim J W, Sung Y E, et al. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Solar Energy Materials and Solar Cells, 2009, 93:2062 doi: 10.1016/j.solmat.2009.02.008
[5]
Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 2007, 46:5670 doi: 10.1002/(ISSN)1521-3773
[6]
Zhang Z, Li X, Wang C, et al. ZnO hollow nanofibers:fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C, 2009, 113:19397 doi: 10.1021/jp9070373
[7]
Cho S, Kim D H, Lee B S, et al. Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process. Sensors and Actuators B:Chemical, 2012, 162:300 doi: 10.1016/j.snb.2011.12.081
[8]
Qiu Y, Yu J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates. Solid State Commun, 2008, 148:556. doi: 10.1016/j.ssc.2008.09.047
[9]
Qi Q, Zhang T, Liu L, et al. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sensors and Actuators B:Chemical, 2009, 141:174 doi: 10.1016/j.snb.2009.05.039
[10]
Wagner T, Kohl C D, Morandi S, et al. Photoreduction of mesoporous In2O3:mechanistic model and utility in gas sensing. Chemistry-A European Journal, 2012, 18:8216 doi: 10.1002/chem.v18.26
[11]
Kim S J, Hwang I S, Choi J K, et al. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction. Sensors and Actuators B:Chemical, 2011, 155:512 doi: 10.1016/j.snb.2010.12.055
[12]
Guo L, Shen X, Zhu G, et al. Preparation and gas-sensing performance of In2O3 porous nanoplatelets. Sensors and Actuators B:Chemical, 2011, 155:752 doi: 10.1016/j.snb.2011.01.042
[13]
Lin C W, Chen H I, Chen T Y, et al. On an indium-tin-oxide thin film based ammonia gas sensor. Sensors and Actuators B:Chemical, 2011, 160:1481 doi: 10.1016/j.snb.2011.07.041
[14]
Song P, Wang Q, Yang Z. Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates. Sensors and Actuators B:Chemical, 2012, 168:421 doi: 10.1016/j.snb.2012.04.054
[15]
Donato N, Neri F, Neri G, et al. CO sensing devices based on indium oxide nanoparticles prepared by laser ablation in water. Thin Solid Films, 2011, 520:922 doi: 10.1016/j.tsf.2011.04.182
[16]
Zhang Y, He X, Li J, et al. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensors and Actuators B:Chemical, 2008, 132:67 doi: 10.1016/j.snb.2008.01.006
[17]
Cheng Zhiming, Zhou Sumei, Chen Tongyun, et al. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. Journal of Semiconductors, 2012, 33(11):112003 doi: 10.1088/1674-4926/33/11/112003
[18]
Liu L L, Gong N M, Wei W W. Development of superfine oxidized indium powder. Chinese Journal of Nonferrous Metallurgy, 1999, 28(6):32
[19]
Zhang F, Wang X, Dong J, et al. Selective BTEX sensor based on a SnO2/V2O5 composite. Sensors and Actuators B:Chemical, 2013, 186:126 doi: 10.1016/j.snb.2013.05.086
[20]
Song X, Zhang D, Fan M. A novel toluene sensor based on ZnO-SnO2 nanofiber web. Appl Surf Sci, 2009, 255:7343. doi: 10.1016/j.apsusc.2009.02.094
[21]
Navale S T, Bandgar D K, Nalage S R, et al. Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceramics International, 2013, 39:6453 doi: 10.1016/j.ceramint.2013.01.074
Fig. 1.  The schematic of electrospinning device and sensor

Fig. 2.  XRD patterns of In2O3 nanotubes

Fig. 3.  (a), (b) SEM images of In2O3 nanotubes under different magnifications. (c) TEM image of In2O3 nanotubes

Fig. 4.  (a) Nitrogen adsorption and desorption isotherms and pore size distribution curve (inset) of In2O3 nanotubes. (b) Nitrogen adsorption and desorption isotherms of In2O3 powders

Fig. 5.  (a) The relationship between operating temperature and response to 100 ppm toluene. (b) Response and recovery curves of gas sensor to 100 ppm gases at 340 ℃

Fig. 6.  (a) Response time curves of gas sensor to 1, 5, 40, 80 ppm toluene at 340 ℃. (b) Response and recovery cycle curves of In2O3 sensor

Fig. 7.  Stability of sensors to 5, 40, 100 ppm toluene at 340 ℃

[1]
Pramod N G, Pandey S N, Sahay P P. Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films. Ceramics International, 2012, 38:4151 doi: 10.1016/j.ceramint.2012.01.075
[2]
Zhao Wenjie, Shi Yunbo, Xiu Debin, et al. Sensitive properties of In-based compound semiconductor oxide to Cl2 gas. Journal of Semiconductors, 2009, 30(3):034010 doi: 10.1088/1674-4926/30/3/034010
[3]
Sun Peng, Hu Ming, Li Mingda, et al. Nano-WO3 film modified macro-porous silicon (MPS) gas sensor. Journal of Semiconductors, 2012, 33(5):054012 doi: 10.1088/1674-4926/33/5/054012
[4]
Shim H S, Kim J W, Sung Y E, et al. Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method. Solar Energy Materials and Solar Cells, 2009, 93:2062 doi: 10.1016/j.solmat.2009.02.008
[5]
Greiner A, Wendorff J H. Electrospinning:a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 2007, 46:5670 doi: 10.1002/(ISSN)1521-3773
[6]
Zhang Z, Li X, Wang C, et al. ZnO hollow nanofibers:fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C, 2009, 113:19397 doi: 10.1021/jp9070373
[7]
Cho S, Kim D H, Lee B S, et al. Ethanol sensors based on ZnO nanotubes with controllable wall thickness via atomic layer deposition, an O2 plasma process and an annealing process. Sensors and Actuators B:Chemical, 2012, 162:300 doi: 10.1016/j.snb.2011.12.081
[8]
Qiu Y, Yu J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates. Solid State Commun, 2008, 148:556. doi: 10.1016/j.ssc.2008.09.047
[9]
Qi Q, Zhang T, Liu L, et al. Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sensors and Actuators B:Chemical, 2009, 141:174 doi: 10.1016/j.snb.2009.05.039
[10]
Wagner T, Kohl C D, Morandi S, et al. Photoreduction of mesoporous In2O3:mechanistic model and utility in gas sensing. Chemistry-A European Journal, 2012, 18:8216 doi: 10.1002/chem.v18.26
[11]
Kim S J, Hwang I S, Choi J K, et al. Enhanced C2H5OH sensing characteristics of nano-porous In2O3 hollow spheres prepared by sucrose-mediated hydrothermal reaction. Sensors and Actuators B:Chemical, 2011, 155:512 doi: 10.1016/j.snb.2010.12.055
[12]
Guo L, Shen X, Zhu G, et al. Preparation and gas-sensing performance of In2O3 porous nanoplatelets. Sensors and Actuators B:Chemical, 2011, 155:752 doi: 10.1016/j.snb.2011.01.042
[13]
Lin C W, Chen H I, Chen T Y, et al. On an indium-tin-oxide thin film based ammonia gas sensor. Sensors and Actuators B:Chemical, 2011, 160:1481 doi: 10.1016/j.snb.2011.07.041
[14]
Song P, Wang Q, Yang Z. Biomorphic synthesis and gas response of In2O3 microtubules using cotton fibers as templates. Sensors and Actuators B:Chemical, 2012, 168:421 doi: 10.1016/j.snb.2012.04.054
[15]
Donato N, Neri F, Neri G, et al. CO sensing devices based on indium oxide nanoparticles prepared by laser ablation in water. Thin Solid Films, 2011, 520:922 doi: 10.1016/j.tsf.2011.04.182
[16]
Zhang Y, He X, Li J, et al. Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers. Sensors and Actuators B:Chemical, 2008, 132:67 doi: 10.1016/j.snb.2008.01.006
[17]
Cheng Zhiming, Zhou Sumei, Chen Tongyun, et al. Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method. Journal of Semiconductors, 2012, 33(11):112003 doi: 10.1088/1674-4926/33/11/112003
[18]
Liu L L, Gong N M, Wei W W. Development of superfine oxidized indium powder. Chinese Journal of Nonferrous Metallurgy, 1999, 28(6):32
[19]
Zhang F, Wang X, Dong J, et al. Selective BTEX sensor based on a SnO2/V2O5 composite. Sensors and Actuators B:Chemical, 2013, 186:126 doi: 10.1016/j.snb.2013.05.086
[20]
Song X, Zhang D, Fan M. A novel toluene sensor based on ZnO-SnO2 nanofiber web. Appl Surf Sci, 2009, 255:7343. doi: 10.1016/j.apsusc.2009.02.094
[21]
Navale S T, Bandgar D K, Nalage S R, et al. Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceramics International, 2013, 39:6453 doi: 10.1016/j.ceramint.2013.01.074
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2191 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 02 July 2013 Revised: 13 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiao Chi, Changbai Liu, Jinbao Zhang, Li Liu, Haiying Li, Yue He, Xiaoqing Bo, Lili Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. Journal of Semiconductors, 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005 X Chi, C B Liu, J B Zhang, L Liu, H Y Li, Y He, X Q Bo, L L Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. J. Semicond., 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005.Export: BibTex EndNote
      Citation:
      Xiao Chi, Changbai Liu, Jinbao Zhang, Li Liu, Haiying Li, Yue He, Xiaoqing Bo, Lili Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. Journal of Semiconductors, 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005

      X Chi, C B Liu, J B Zhang, L Liu, H Y Li, Y He, X Q Bo, L L Liu. Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning[J]. J. Semicond., 2014, 35(6): 064005. doi: 10.1088/1674-4926/35/6/064005.
      Export: BibTex EndNote

      Toluene-sensing properties of In2O3 nanotubes synthesized by electrospinning

      doi: 10.1088/1674-4926/35/6/064005
      Funds:

      the Jilin Provincial Science and Technology Department 20100344

      the Jilin Provincial Science and Technology Department 20140204027GX

      the Jilin Environment Office 2009-22

      Project supported by the Jilin Environment Office (No. 2009-22) and the Jilin Provincial Science and Technology Department (Nos. 20100344, 20140204027GX)

      More Information
      • Corresponding author: Liu Li, Email:liul99@jlu.edu.cn
      • Received Date: 2013-07-02
      • Revised Date: 2014-01-13
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return