SEMICONDUCTOR INTEGRATED CIRCUITS

A low power high gain gain-controlled LNA + mixer for GNSS receivers

Binbin Wei1 and Jinguang Jiang1, 2, 3,

+ Author Affiliations

 Corresponding author: Jiang Jinguang, jgjiang95@aliyun.com

PDF

Abstract: A low power high gain gain-controlled LNA + mixer for GNSS receivers is reported. The high gain LNA is realized with a current source load. Its gain-controlled ability is achieved using a programmable bias circuit. Taking advantage of the high gain LNA, a high noise figure passive mixer is adopted. With the passive mixer, low power consumption and high voltage gain of the LNA + mixer are achieved. To fully investigate the performance of this circuit, comparisons between a conventional LNA + mixer, a previous low power LNA + mixer, and the proposed LNA + mixer are presented. The circuit is implemented in 0.18 μm mixed-signal CMOS technology. A 3.8 dB noise figure, an overall 45 dB converge gain and a 10 dB controlled gain range of the two stages are measured. The chip occupies 0.24 mm2 and consumes 2 mA current under 1.8 V supply.

Key words: CMOSGNSS receiverlow powerLNAmixerhigh gain



[1]
Meng T H. Low power GPS receiver design. IEEE Workshop on Signal Processing Systems, 1998 http://ieeexplore.ieee.org/document/715763/
[2]
Lee T H. The design of CMOS radio-frequency integrated circuits. Cambridge, UK:Cambridge University Press, 2004 http://ci.nii.ac.jp/ncid/BA37787919
[3]
Sjöland H, Karimi-Sanjaani A, Abidi A A. A merged CMOS LNA and mixer for a WCDMA receiver. IEEE J Solid-State Circuits, 2003, 38(6):1045 doi: 10.1109/JSSC.2003.811952
[4]
Shen C, Li Z. A low power 0.3-3.8 GHz low-noise mixer with noise cancellation. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012 http://ieeexplore.ieee.org/document/6338178/authors
[5]
Sun J, Huang L, Liu H, et al. A 0.18μm mixer merged with LNA exploiting noise cancellation. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2011
[6]
Shaeffer D K, Lee T H. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):748 http://ieeexplore.ieee.org/document/568846/?arnumber=568846&punumber%3D4
[7]
Leroux P, Janssens J, Steyaert M. A 0.8-dB NF ESD-protected 9-mW CMOS LNA operating at 1.23 GHz. IEEE J Solid-State Circuits, 2002, 37(6):760 doi: 10.1109/JSSC.2002.1004580
[8]
Terrovitis M T, Meyer R G. Noise in current-commutating CMOS mixers. IEEE J Solid-State Circuits, 1999, 34(6):772 doi: 10.1109/4.766811
[9]
Darabi H, Abidi A A. Noise in RF-CMOS mixers:a simple physical model. IEEE J Solid-State Circuits, 2000, 35(1):15 doi: 10.1109/4.818916
[10]
NacEachern L A, Manku T. A charge-injection method for Gilbert cell biasing. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 1:365
[11]
Kim M, Lee J, Yun T. Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques. Electron Lett, 2012, 48(23):1476 doi: 10.1049/el.2012.2642
[12]
Darabi H, Chiu J. A noise cancellation technique in active RF-CMOS mixers. IEEE J Solid-State Circuits, 2005, 40(12):2628 doi: 10.1109/JSSC.2005.857428
[13]
Kim N, Aparin V, Larson L E. A resistively degenerated wide-band CMOS passive mixer with low noise figure and high ⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4):820 doi: 10.1109/TMTT.2010.2042644
[14]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS. Journal of Semiconductors, 2012, 34(1):015003 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract_new.aspx?volume=34&start_page=015003
[15]
Liu Rongjiang, Guo Guiliang, Yan Yuepeng. High linearity current communicating passive mixer employing a simple resistor bias. Journal of Semiconductors, 2013, 34(3):035005 doi: 10.1088/1674-4926/34/3/035005
[16]
Macario R C V, Mejallie I D. The phasing method for sideband selection in broadcast receivers. EBU Rev, 1980, 181:119
[17]
Meng C C, Sung D W, Huang G W. A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filter for 40-dB image reflection. IEEE Microw Compon Lett, 2005, 30(2):59 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=1390964&filter%3DAND%28p_IS_Number%3A30286%29
[18]
Lai Dengjun, Chen Yingmei, Wang Xiaodong, et al. A CMOS single-differential LNA and current bleeding CMOS mixer for GPS receivers. 12th IEEE International Conference on Communication Technology (ICCT), 2010 http://ieeexplore.ieee.org/Xplore/home.jsp
[19]
Le V H, Han S K, Lee J S, et al. Current-reused ultra low power, low noise LNA mixer. IEEE Microw Wireless Compon Lett, 2009, 19(11):755 doi: 10.1109/LMWC.2009.2032028
[20]
Abdelghany M A, Pokharel R K, Kanaya H, et al. Low-voltage low-power combined LNA-single gate mixer for 5 GHz wireless systems. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011:1
[21]
Sun Jingye, Huang Lu, Yuan Haiquan, et al. A 0.18μm CMOS Gilbert low noise mixer with noise cancellation. Journal of Semiconductors, 2012, 33(2):025004 doi: 10.1088/1674-4926/33/2/025004
Fig. 1.  Conventional LC load LNA with an active Gilbert mixer.

Fig. 2.  Low power merged LNA $+$ mixer. (a) Source inductor low noise transchonductor. (b) Noise cancellation low noise transconductor.

Fig. 3.  Proposed high gain and passive mixer.

Fig. 4.  Programmable high gain LNA.

Fig. 5.  Bias circuit.

Fig. 6.  Passive mixer and polyphase filter.

Fig. 7.  Schematic of the 2-order polyphase filter.

Fig. 8.  Chip photograph of the high gain low power LNA + mixer.

Fig. 9.  Measured input return loss.

Fig. 10.  Measured conversion gain.

Fig. 11.  Measured noise figure.

Table 1.   The relationship between $R_{\rm eq}$ and the control signal.

Table 2.   Performance comparison.

[1]
Meng T H. Low power GPS receiver design. IEEE Workshop on Signal Processing Systems, 1998 http://ieeexplore.ieee.org/document/715763/
[2]
Lee T H. The design of CMOS radio-frequency integrated circuits. Cambridge, UK:Cambridge University Press, 2004 http://ci.nii.ac.jp/ncid/BA37787919
[3]
Sjöland H, Karimi-Sanjaani A, Abidi A A. A merged CMOS LNA and mixer for a WCDMA receiver. IEEE J Solid-State Circuits, 2003, 38(6):1045 doi: 10.1109/JSSC.2003.811952
[4]
Shen C, Li Z. A low power 0.3-3.8 GHz low-noise mixer with noise cancellation. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012 http://ieeexplore.ieee.org/document/6338178/authors
[5]
Sun J, Huang L, Liu H, et al. A 0.18μm mixer merged with LNA exploiting noise cancellation. IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2011
[6]
Shaeffer D K, Lee T H. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J Solid-State Circuits, 1997, 32(5):748 http://ieeexplore.ieee.org/document/568846/?arnumber=568846&punumber%3D4
[7]
Leroux P, Janssens J, Steyaert M. A 0.8-dB NF ESD-protected 9-mW CMOS LNA operating at 1.23 GHz. IEEE J Solid-State Circuits, 2002, 37(6):760 doi: 10.1109/JSSC.2002.1004580
[8]
Terrovitis M T, Meyer R G. Noise in current-commutating CMOS mixers. IEEE J Solid-State Circuits, 1999, 34(6):772 doi: 10.1109/4.766811
[9]
Darabi H, Abidi A A. Noise in RF-CMOS mixers:a simple physical model. IEEE J Solid-State Circuits, 2000, 35(1):15 doi: 10.1109/4.818916
[10]
NacEachern L A, Manku T. A charge-injection method for Gilbert cell biasing. IEEE Canadian Conference on Electrical and Computer Engineering, 1998, 1:365
[11]
Kim M, Lee J, Yun T. Low-noise and high-gain mixer combining switched-biasing and current-bleeding techniques. Electron Lett, 2012, 48(23):1476 doi: 10.1049/el.2012.2642
[12]
Darabi H, Chiu J. A noise cancellation technique in active RF-CMOS mixers. IEEE J Solid-State Circuits, 2005, 40(12):2628 doi: 10.1109/JSSC.2005.857428
[13]
Kim N, Aparin V, Larson L E. A resistively degenerated wide-band CMOS passive mixer with low noise figure and high ⅡP2. IEEE Trans Microw Theory Tech, 2010, 58(4):820 doi: 10.1109/TMTT.2010.2042644
[14]
Bao Kuan, Fan Xiangning, Li Wei, et al. A wideband current-commutating passive mixer for multi-standard receivers in a 0.18μm CMOS. Journal of Semiconductors, 2012, 34(1):015003 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract_new.aspx?volume=34&start_page=015003
[15]
Liu Rongjiang, Guo Guiliang, Yan Yuepeng. High linearity current communicating passive mixer employing a simple resistor bias. Journal of Semiconductors, 2013, 34(3):035005 doi: 10.1088/1674-4926/34/3/035005
[16]
Macario R C V, Mejallie I D. The phasing method for sideband selection in broadcast receivers. EBU Rev, 1980, 181:119
[17]
Meng C C, Sung D W, Huang G W. A 5.2-GHz GaInP/GaAs HBT double-quadrature downconverter with polyphase filter for 40-dB image reflection. IEEE Microw Compon Lett, 2005, 30(2):59 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=1390964&filter%3DAND%28p_IS_Number%3A30286%29
[18]
Lai Dengjun, Chen Yingmei, Wang Xiaodong, et al. A CMOS single-differential LNA and current bleeding CMOS mixer for GPS receivers. 12th IEEE International Conference on Communication Technology (ICCT), 2010 http://ieeexplore.ieee.org/Xplore/home.jsp
[19]
Le V H, Han S K, Lee J S, et al. Current-reused ultra low power, low noise LNA mixer. IEEE Microw Wireless Compon Lett, 2009, 19(11):755 doi: 10.1109/LMWC.2009.2032028
[20]
Abdelghany M A, Pokharel R K, Kanaya H, et al. Low-voltage low-power combined LNA-single gate mixer for 5 GHz wireless systems. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2011:1
[21]
Sun Jingye, Huang Lu, Yuan Haiquan, et al. A 0.18μm CMOS Gilbert low noise mixer with noise cancellation. Journal of Semiconductors, 2012, 33(2):025004 doi: 10.1088/1674-4926/33/2/025004
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2662 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 05 April 2013 Revised: 20 May 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Binbin Wei, Jinguang Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers[J]. Journal of Semiconductors, 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002 B B Wei, J G Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers[J]. J. Semicond., 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002.Export: BibTex EndNote
      Citation:
      Binbin Wei, Jinguang Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers[J]. Journal of Semiconductors, 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002

      B B Wei, J G Jiang. A low power high gain gain-controlled LNA + mixer for GNSS receivers[J]. J. Semicond., 2013, 34(11): 115002. doi: 10.1088/1674-4926/34/11/115002.
      Export: BibTex EndNote

      A low power high gain gain-controlled LNA + mixer for GNSS receivers

      doi: 10.1088/1674-4926/34/11/115002
      Funds:

      the Important National Science and Technology Specific Projects, China 2009ZX01031-002-011

      Project supported by the Important National Science and Technology Specific Projects, China (No. 2009ZX01031-002-011), the National Natural Science Foundation of China (No. 41274047), and the Natural Science Foundation of Jiangsu Province, China (No. BK2012639)

      the National Natural Science Foundation of China 41274047

      the Natural Science Foundation of Jiangsu Province, China BK2012639

      More Information
      • Corresponding author: Jiang Jinguang, jgjiang95@aliyun.com
      • Received Date: 2013-04-05
      • Revised Date: 2013-05-20
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return