REVIEWS

Perovskite semiconductors for direct X-ray detection and imaging

Yirong Su, Wenbo Ma and Yang (Michael) Yang

+ Author Affiliations

 Corresponding author: Yang (Michael) Yang, yangyang15@zju.edu.cn

PDF

Turn off MathJax

Abstract: Halide perovskites have emerged as the next generation of optoelectronic materials and their remarkable performances have been attractive in the fields of solar cells, light-emitting diodes, photodetectors, etc. In addition, halide perovskites have been reported as an attractive new class of X-ray direct detecting materials recently, owning to the strong X-ray stopping capacity, excellent carrier transport, high sensitivity, and cost-effective manufacturing. Meanwhile, perovskite based direct X-ray imagers have been successfully demonstrated as well. In this review article, we firstly introduced some fundamental principles of direct X-ray detection and imaging, and summarized the advances of perovskite materials for these purposes and finally put forward some needful and feasible directions.

Key words: halide perovskitesX-ray detectionoptoelectronic materials



[1]
Spahn M. X-ray detectors in medical imaging. Nucl Instrum Methods Phys Res A, 2013, 731, 57 doi: 10.1016/j.nima.2013.05.174
[2]
Van Eijk C W. Inorganic scintillators in medical imaging. Phys Med Biol, 2002, 47, R85 doi: 10.1088/0031-9155/47/8/201
[3]
Duan X, Cheng J, Zhang L, et al. X-ray cargo container inspection system with few-view projection imaging. Nucl Instrum Methods Phys Res A, 2009, 598, 439 doi: 10.1016/j.nima.2008.08.151
[4]
Haff R P, Toyofuku N. X-ray detection of defects and contaminants in the food industry. Sens Instrum Food Quality Safety, 2008, 2, 262 doi: 10.1007/s11694-008-9059-8
[5]
Chapman H N, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography. Nature, 2011, 470, 73 doi: 10.1038/nature09750
[6]
Nielsen J A, McMorrow D. Elements of modern X-ray physics. Wiley, 2011
[7]
Moses W W. Scintillator requirements for medical imaging. LBNL Publications, 1999
[8]
Lin E C. Radiation risk from medical imaging. In: Mayo Clinic Proceedings. Elsevier, 2010, 1142
[9]
Knoll G F. Radiation detection and measurement. John Wiley & Sons, 2010
[10]
Rowlands J A. Medical imaging: Material change for X-ray detectors. Nature, 2017, 550, 47 doi: 10.1038/550047a
[11]
Kasap S, Frey J B, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors, 2011, 11, 5112 doi: 10.3390/s110505112
[12]
Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2017, 2, 17102 doi: 10.1038/nenergy.2017.102
[13]
Xiao Z, Kerner R A, Zhao L, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics, 2017, 11, 108 doi: 10.1038/nphoton.2016.269
[14]
Saliba M, Wood S M, Patel J B, et al. Structured organic–inorganic perovskite toward a distributed feedback laser. Adv Mater, 2016, 28, 923 doi: 10.1002/adma.201502608
[15]
Dou L, Yang Y M, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[16]
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[17]
Pan W, Wu H, Luo J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[18]
Zhuang R, Wang X, Ma W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photonics, 2019, 13, 602 doi: 10.1038/s41566-019-0466-7
[19]
Wei W, Zhang Y, Xu Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat Photonics, 2017, 11, 315 doi: 10.1038/nphoton.2017.43
[20]
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9, 444 doi: 10.1038/nphoton.2015.82
[21]
Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550, 87 doi: 10.1038/nature24032
[22]
Martin J E. Physics for radiation protection: a handbook. John Wiley & Sons, 2006
[23]
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10, 1066 doi: 10.1038/s41467-019-08981-w
[24]
Devanathan R, Corrales L R, Gao F, et al. Signal variance in gamma-ray detectors—A review. Nucl Instrum Methods Phys Res A, 2006, 565, 637 doi: 10.1016/j.nima.2006.05.085
[25]
Kabir M. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J Appl Phys, 2008, 104, 074506 doi: 10.1063/1.2990765
[26]
Klein C A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys, 1968, 39, 2029 doi: 10.1063/1.1656484
[27]
Alig R, Bloom S. Electron-hole-pair creation energies in semiconductors. Phys Rev Lett, 1975, 35, 1522 doi: 10.1103/PhysRevLett.35.1522
[28]
van Heerden P J. The crystalcounter. Noord-Holl Uitg Mij, 1945
[29]
McKay K G. A. germanium counter. Phys Rev, 1949, 76, 1537 doi: 10.1103/PhysRev.76.1537
[30]
Guerra M, Manso M, Longelin S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J Instrum, 2012, 7, C10004 doi: 10.1088/1748-0221/7/10/C10004
[31]
Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instrum Methods Phys Res A, 2004, 531, 18 doi: 10.1016/j.nima.2004.05.071
[32]
Del Sordo S, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 2009, 9, 3491 doi: 10.3390/s90503491
[33]
Luke P, Rossington C, Wesela M. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts. IEEE Trans Nucl Sci, 1994, 41, 1074 doi: 10.1109/23.322861
[34]
Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys Status Solidi B, 2004, 241, 783 doi: 10.1002/pssb.200304296
[35]
Zentai G, Schieber M, Partain L, et al. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging. J Cryst Growth, 2005, 275, e1327 doi: 10.1016/j.jcrysgro.2004.11.105
[36]
Schieber M M, Zuck A, Melekhov L, et al. High-flux X-ray response of composite mercuric iodide detectors. In: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics. International Society for Optics and Photonics, 1999, 296
[37]
Street R, Ready S, Van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys, 2002, 91, 3345 doi: 10.1063/1.1436298
[38]
Schieber M, Hermon H, Zuck A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J Cryst Growth, 2001, 225, 118 doi: 10.1016/S0022-0248(01)00832-6
[39]
Zentai G, Partain L D, Pavlyuchkova R, et al. Mercuric iodide and lead iodide X-ray detectors for radiographic and fluoroscopic medical imaging In: Medical Imaging 2003: Physics of Medical Imaging. International Society for Optics and Photonics, 2003, 77
[40]
Yun M S, Cho S H, Lee R, et al. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn J Appl Phys, 2010, 49, 041801 doi: 10.1143/JJAP.49.041801
[41]
Shah K, Street R, Dmitriyev Y, et al. X-ray imaging with PbI2-based a-Si: H flat panel detectors. Nucl Instrum Methods Phys Res A, 2001, 458, 140 doi: 10.1016/S0168-9002(00)00857-3
[42]
Simon M, Ford R, Franklin A, et al. Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Symposium Conference Record Nuclear Science, 2004, 4268
[43]
Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl Instrum Methods Phys Res A, 2010, 624, 114 doi: 10.1016/j.nima.2010.09.006
[44]
Hitomi K, Kikuchi Y, Shoji T, et al. Improvement of energy resolutions in TlBr detectors. Nucl Instrum Methods Phys Res A, 2009, 607, 112 doi: 10.1016/j.nima.2009.03.129
[45]
Brenner T M, Egger D A, Kronik L, et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1, 15007 doi: 10.1038/natrevmats.2015.7
[46]
de Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100 doi: 10.1038/natrevmats.2016.100
[47]
Kasap S. Low-cost X-ray detectors. Nat Photonics, 2015, 9, 420 doi: 10.1038/nphoton.2015.108
[48]
Lang F, Nickel N H, Bundesmann J, et al. Radiation hardness and self-healing of perovskite solar cells. Adv Mater, 2016, 28, 8726 doi: 10.1002/adma.201603326
[49]
Yang S, Xu Z, Xue S, et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547
[50]
Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2, 17042 doi: 10.1038/natrevmats.2017.42
[51]
Lang F, Shargaieva O, Brus V V, et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv Mater, 2018, 30, 1702905 doi: 10.1002/adma.201702905
[52]
Dong Q, Fang Y, Shao Y, et al. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[53]
Ye F, Lin H, Wu H, et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv Funct Mater, 2019, 29, 1806984 doi: 10.1002/adfm.201806984
[54]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6, 1 doi: 10.1038/ncomms8586
[55]
Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics, 2017, 11, 436 doi: 10.1038/nphoton.2017.94
[56]
Pan W, Yang B, Niu G, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv Mater, 2019, 31, 1904405 doi: 10.1002/adma.201904405
[57]
Kasap S. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D, 2000, 33, 2853 doi: 10.1088/0022-3727/33/21/326
[58]
Heiss W, Brabec C. X-ray imaging: Perovskites target X-ray detection. Nat Photonics, 2016, 10, 288 doi: 10.1038/nphoton.2016.54
[59]
Wang X, Zhao D, Qiu Y, et al. PIN diodes array made of perovskite single crystal for X-ray imaging. Phys Status Solidi RRL, 2018, 12, 1800380 doi: 10.1002/pssr.201800380
[60]
Huang Y, Qiao L, Jiang Y, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew Chem Int Ed, 2019, 58, 17834 doi: 10.1002/anie.201911281
[61]
Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3, 19688 doi: 10.1039/C5TA06398A
[62]
Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31(30), 1901644 doi: 10.1002/adma.201901644
[63]
Yuan W, Niu G, Xian Y, et al. In situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Mater, 2019, 29, 1900234 doi: 10.1002/adfm.201900234
[64]
Zhang B, Liu X, Xiao B, et al. High performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J Phys Chem Lett, 2020, 11, 43 doi: 10.1021/acs.jpclett.9b03523
[65]
Wu C, Zhang Q, Liu G, et al. From Pb to Bi: a promising family of Pb-free optoelectronic materials and devices. Adv Energy Mater, 2019, 10, 1902496 doi: 10.1002/aenm.201902496
[66]
Steele J A, Pan W, Martin C, et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Adv Mater, 2018, 30, 1804450 doi: 10.1002/adma.201804450
[67]
Xu Z, Liu X, Li Y, et al. Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew Chem Int Ed, 2019, 58, 15757 doi: 10.1002/anie.201909815
[68]
Yin L, Wu H, Pan W, et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection. Adv Opt Mater, 2019, 7, 1900491 doi: 10.1002/adom.201900491
[69]
Yao L, Niu G, Yin L, et al. Bismuth halide perovskite derivatives for direct X-ray detection. J Mater Chem C, 2020, 8, 1239 doi: 10.1039/C9TC06313G
[70]
Tao K, Li Y, Ji C, et al. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem Mater, 2019, 31, 5927 doi: 10.1021/acs.chemmater.9b02263
[71]
Rikner G, Grusell E. Effects of radiation damage on p-type silicon detectors. Phys Med Biol, 1983, 28, 1261 doi: 10.1088/0031-9155/28/11/006
[72]
Bellazzini R, Spandre G, Brez A, et al. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J Instrum, 2013, 8, C02028 doi: 10.1088/1748-0221/8/02/C02028
[73]
Ivanov Y M, Kanevsky V, Dvoryankin V, et al. The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography. Phys Status Solidi C, 2003, 0(3), 840 doi: 10.1002/pssc.200306258
[74]
Zheng X, Zhao W, Wang P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J Energy Chem, 2020, 49, 299 doi: 10.1016/j.jechem.2020.02.049
[75]
Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat Photonics, 2015, 9, 843 doi: 10.1038/nphoton.2015.216
[76]
Samei E, Flynn M J, Reimann D A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys, 1998, 25, 102 doi: 10.1118/1.598165
[77]
Hoheisel M, Batz L, Mertelmeier T, et al. Modulation transfer function of a selenium-based digital mammography system. IEEE Trans Nucl Sci, 2006, 53, 1118 doi: 10.1109/TNS.2006.874953
[78]
Kabir M Z, Kasap S. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping. J Phys D, 2003, 36, 2352 doi: 10.1088/0022-3727/36/19/006
[79]
Hunter D M, Belev G, Kasap S, et al. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD X-ray detector. Med Phys, 2012, 39, 608 doi: 10.1118/1.3673957
[80]
Kozorezov A G, Wigmore J, Owens A, et al. The effect of carrier diffusion on the characteristics of semiconductor imaging arrays. Nucl Instrum Methods Phys Res A, 2004, 531, 52 doi: 10.1016/j.nima.2004.05.073
Fig. 1.  (Color online) (a) Spectrum region of X-ray to wavelength and photon energy. (b) Thomson scattering from an atom. An X-ray with a wave vector k scatters from an atom to the direction specified by k’. The scattering is assumed to be elastic. Reproduced with permission from Ref. [6]. (c) Compton scattering. A photon with energy $ {\varepsilon}=\hbar ck $ and momentum $\hbar {k}$ scatters from an electron at rest with energy mc2. The electron recoils with a momentum $\hbar {q'} = \hbar \left( {{k} - {k'}} \right)$. Reproduced with permission from Ref. [6]. (d) Schematic diagram of photoelectric absorption process. An X-ray photon is absorbed and an electron ejected from the atom. The hole created in the inner shell (k) can be filled by Fluorescent X-ray emission. Electrons in an outer shell fill the hole, creating a photon. In this diagram the outer electron comes either from the L or M shell. In the former case the fluorescent radiation is referred to as the Kα line, and in the latter as Kβ line.

Fig. 2.  (Color online) (a) Working Principle of ion chamber. Reproduced with permission from Ref. [22]. (b) Semiconductor X-ray detectors’ two types of work modes: current mode and voltage mode. Reproduced with permission from Ref. [23]. (c) The linear absorption coefficients of different kinds of perovskite and conventional X-ray detectors. (d) Images of a piece of MAPbI3 single crystal. Reproduced with permission from Ref. [52]. (e) Images of perovskite single crystals of MAPbBr3 (left top), c-MAPbI3 (right top), Cs2AgBiBr6 (left bottom) and (NH3)4Bi2I9 (right bottom). Reproduced with permission from Ref. [1618, 53]. (f) Schematic representation of the ITC apparatus in which the crystallization vial is immersed within a heating bath. The solution is heated from room temperature and kept at an elevated temperature (80 °C for MAPbBr3 and 110 °C for MAPbI3) to initiate the crystallization. Reproduced with permission from Ref. [54]. (g) Schematic of layer stacking of the MAPbI3-based PIN photodiode. Reproduced with permission from Ref. [20]. (h) Illustration of an all-solution-processed digital X-ray detector. Reproduced with permission from Ref. [21]. (i) Device stack of the MAPbI3-wafer-based X-ray detector. Inset: Free-standing MAPbI3 wafer (thickness: 1 mm). Reproduced with permission from Ref. [55]. (j) Preparation scheme for a thick CsPbBr3 film using the four-step hot-pressing method. Reproduced with permission from Ref. [56].

Fig. 3.  (Color online) (a) X-ray image of resolution test chart. Reproduced with permission from Ref. [42]. (b) An edge X-ray image used for calculation of MTF. Reproduced with permission from Ref. [76]. (c) A simplified schematic diagram of the cross section of a single pixel with a TFT. The charges generated by the absorption of X-rays drift towards their respective electrodes. The TFT is normally off and is turned on when the gate G1 is addressed. Reproduced with permission from Ref. [11]. (d) Idealized MTF and MTF due to trapping. Reproduced with permission from Ref. [25].

Fig. 4.  (Color online) (a) Left: Anrad’s mammographic FPXI (AXS-2430) is used in mammography markets. The field of view is 24 × 30 cm2 and the FPXI have a pixel pitch of 85 μm. Right: an X-ray image of a hand from AXS-2430. Reproduced with permission from Ref. [11]. (b) Photograph (left) and corresponding X-ray image (right) of a leaf, obtained with the photoconductor in Ref. [20]. Reproduced with permission from Ref. [20]. (c) Left: image of spin-cast PI-MAPbI3 on an a-Si:H TFT backplane. The inset in the left shows a single-pixel structure of TFT (scale bar 30 μm). Right: A hand X-ray image obtained from this MAPbI3 FPXI. Reproduced with permission from Ref. [21]. (d) Left: The fabricated multi-pixel wafer-based Cs2AgBiBr6 polycrystalline detector. Right top: schematic illustration of the imaging process. Right bottom: X-ray image and optical image of ‘HUST’ symbol. Reproduced with permission from Ref. [18]. (e) Photograph of Si-integrated MAPbBr3 single crystal with a 10 g weight attached to the MAPbBr3 crystal. Reproduced with permission from Ref. [19]. (f) Left: schematic illustration of X-ray imaging with Si-integrated MAPbBr3 single crystal detectors. Right: photo (top) and X-ray image (bottom) of an ‘N’ copper logo. Reproduced with permission from Ref. [19]. (g) Top: photo of the PIN array. Bottom: object photo (left) and X-ray image (right) for 100 keV energy. Reproduced with permission from Ref. [59].

Table 1.   Performances and parameters of part of conventional and perovskite X-ray direct detectors. In “status” column, A is amorphous, S is single-crystal and P is polycrystalline.

MaterialLinear absorption coefficients to
50 keV (cm−1)
W± (eV)μτ (cm2 V−1)F (V/cm)Sensitivity (μC/(Gy·cm2))Lowest detectable dose rate (nGyair/s)Status (A, P or S)Ref.
μeτeμhτh
Si1.0223.62> 1~ 10.58< 8300S[30-32, 71]
CZT60.63~ 4.610−3 – 10−210−50.1−131850S[32, 34, 72, 73]
a-Se3.864453 × 10−7
10−5
10−6
6 × 10−5
> 10420A[11, 21, 57]
MAPbBr319.416.031.2 × 10−20.580500S[16]
MAPbBr3(Si)19.416.031.39 × 10−4~ 352.1 × 104< 100S[19]
MAPbBr3(PIN)19.416.031502.36 × 104S[59]
MAPbI3(Cuboid)40.61~ 4.41.1 × 10−410968.9S[53]
MAPbI3(GA alloyed)< 40.61~ 4.51.25 × 10−2~ 422.3 × 10416.9S[60]
CsPbBr3(QDs)35.07~ 5.910001450S[62]
CsPbBr3(Rb doped)35.07~ 5.97.2 × 10−4~ 2008.1 × 103S[63]
CsPbI3(1D)57.06~ 6.83.63 × 10−341.72.37 × 103219S[64]
Cs2AgBiBr639.085.611.21 × 10−3, 6.3 × 10−3, 5.51 × 10−3, 1.94 × 10−3, —, 5.95 × 10−333, 250, 5000, 227, 500, 5004.2, 105, 250, 288.8, 988,1974S/P[17, 18, 63, 66-68]
(NH4)3Bi2I946.985.471.1 × 10−2//, 4 × 10−3508.2 × 103//, 803⊥55S[18]
(DMEDA)BiI5~ 405.15494072.5S[69]
MAPbI3(PV)40.61~ 4.42 × 10−7~ 80001.75P[20]
MAPbI3(Flat detector)40.61~ 4.41 × 10−4~ 24103.8 × 103P[21]
MAPbI3(Wafer)40.61~ 4.42 × 10−457002.527 × 103P[55]
CsPbBr3(Hot-pressed)35.07~ 61.32 × 10−2505.5684 × 104215P[56]
MA3Bi2I9~405.391.2 × 10−3 (out-of-plane), 2.8 × 10−3 (in plane)12010 620 (out-of-plane)5.3S[74]
DownLoad: CSV
[1]
Spahn M. X-ray detectors in medical imaging. Nucl Instrum Methods Phys Res A, 2013, 731, 57 doi: 10.1016/j.nima.2013.05.174
[2]
Van Eijk C W. Inorganic scintillators in medical imaging. Phys Med Biol, 2002, 47, R85 doi: 10.1088/0031-9155/47/8/201
[3]
Duan X, Cheng J, Zhang L, et al. X-ray cargo container inspection system with few-view projection imaging. Nucl Instrum Methods Phys Res A, 2009, 598, 439 doi: 10.1016/j.nima.2008.08.151
[4]
Haff R P, Toyofuku N. X-ray detection of defects and contaminants in the food industry. Sens Instrum Food Quality Safety, 2008, 2, 262 doi: 10.1007/s11694-008-9059-8
[5]
Chapman H N, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography. Nature, 2011, 470, 73 doi: 10.1038/nature09750
[6]
Nielsen J A, McMorrow D. Elements of modern X-ray physics. Wiley, 2011
[7]
Moses W W. Scintillator requirements for medical imaging. LBNL Publications, 1999
[8]
Lin E C. Radiation risk from medical imaging. In: Mayo Clinic Proceedings. Elsevier, 2010, 1142
[9]
Knoll G F. Radiation detection and measurement. John Wiley & Sons, 2010
[10]
Rowlands J A. Medical imaging: Material change for X-ray detectors. Nature, 2017, 550, 47 doi: 10.1038/550047a
[11]
Kasap S, Frey J B, Belev G, et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors, 2011, 11, 5112 doi: 10.3390/s110505112
[12]
Zheng X, Chen B, Dai J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat Energy, 2017, 2, 17102 doi: 10.1038/nenergy.2017.102
[13]
Xiao Z, Kerner R A, Zhao L, et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat Photonics, 2017, 11, 108 doi: 10.1038/nphoton.2016.269
[14]
Saliba M, Wood S M, Patel J B, et al. Structured organic–inorganic perovskite toward a distributed feedback laser. Adv Mater, 2016, 28, 923 doi: 10.1002/adma.201502608
[15]
Dou L, Yang Y M, You J, et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 2014, 5, 5404 doi: 10.1038/ncomms6404
[16]
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics, 2016, 10, 333 doi: 10.1038/nphoton.2016.41
[17]
Pan W, Wu H, Luo J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat Photonics, 2017, 11, 726 doi: 10.1038/s41566-017-0012-4
[18]
Zhuang R, Wang X, Ma W, et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat Photonics, 2019, 13, 602 doi: 10.1038/s41566-019-0466-7
[19]
Wei W, Zhang Y, Xu Q, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat Photonics, 2017, 11, 315 doi: 10.1038/nphoton.2017.43
[20]
Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics, 2015, 9, 444 doi: 10.1038/nphoton.2015.82
[21]
Kim Y C, Kim K H, Son D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550, 87 doi: 10.1038/nature24032
[22]
Martin J E. Physics for radiation protection: a handbook. John Wiley & Sons, 2006
[23]
Wei H, Huang J. Halide lead perovskites for ionizing radiation detection. Nat Commun, 2019, 10, 1066 doi: 10.1038/s41467-019-08981-w
[24]
Devanathan R, Corrales L R, Gao F, et al. Signal variance in gamma-ray detectors—A review. Nucl Instrum Methods Phys Res A, 2006, 565, 637 doi: 10.1016/j.nima.2006.05.085
[25]
Kabir M. Effects of charge carrier trapping on polycrystalline PbO X-ray imaging detectors. J Appl Phys, 2008, 104, 074506 doi: 10.1063/1.2990765
[26]
Klein C A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J Appl Phys, 1968, 39, 2029 doi: 10.1063/1.1656484
[27]
Alig R, Bloom S. Electron-hole-pair creation energies in semiconductors. Phys Rev Lett, 1975, 35, 1522 doi: 10.1103/PhysRevLett.35.1522
[28]
van Heerden P J. The crystalcounter. Noord-Holl Uitg Mij, 1945
[29]
McKay K G. A. germanium counter. Phys Rev, 1949, 76, 1537 doi: 10.1103/PhysRev.76.1537
[30]
Guerra M, Manso M, Longelin S, et al. Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications. J Instrum, 2012, 7, C10004 doi: 10.1088/1748-0221/7/10/C10004
[31]
Owens A, Peacock A. Compound semiconductor radiation detectors. Nucl Instrum Methods Phys Res A, 2004, 531, 18 doi: 10.1016/j.nima.2004.05.071
[32]
Del Sordo S, Abbene L, Caroli E, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors, 2009, 9, 3491 doi: 10.3390/s90503491
[33]
Luke P, Rossington C, Wesela M. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts. IEEE Trans Nucl Sci, 1994, 41, 1074 doi: 10.1109/23.322861
[34]
Szeles C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys Status Solidi B, 2004, 241, 783 doi: 10.1002/pssb.200304296
[35]
Zentai G, Schieber M, Partain L, et al. Large area mercuric iodide and lead iodide X-ray detectors for medical and non-destructive industrial imaging. J Cryst Growth, 2005, 275, e1327 doi: 10.1016/j.jcrysgro.2004.11.105
[36]
Schieber M M, Zuck A, Melekhov L, et al. High-flux X-ray response of composite mercuric iodide detectors. In: Hard X-Ray, Gamma-Ray, and Neutron Detector Physics. International Society for Optics and Photonics, 1999, 296
[37]
Street R, Ready S, Van Schuylenbergh K, et al. Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J Appl Phys, 2002, 91, 3345 doi: 10.1063/1.1436298
[38]
Schieber M, Hermon H, Zuck A, et al. Thick films of X-ray polycrystalline mercuric iodide detectors. J Cryst Growth, 2001, 225, 118 doi: 10.1016/S0022-0248(01)00832-6
[39]
Zentai G, Partain L D, Pavlyuchkova R, et al. Mercuric iodide and lead iodide X-ray detectors for radiographic and fluoroscopic medical imaging In: Medical Imaging 2003: Physics of Medical Imaging. International Society for Optics and Photonics, 2003, 77
[40]
Yun M S, Cho S H, Lee R, et al. Investigation of PbI2 film fabricated by a new sedimentation method as an X-ray conversion material. Jpn J Appl Phys, 2010, 49, 041801 doi: 10.1143/JJAP.49.041801
[41]
Shah K, Street R, Dmitriyev Y, et al. X-ray imaging with PbI2-based a-Si: H flat panel detectors. Nucl Instrum Methods Phys Res A, 2001, 458, 140 doi: 10.1016/S0168-9002(00)00857-3
[42]
Simon M, Ford R, Franklin A, et al. Analysis of lead oxide (PbO) layers for direct conversion X-ray detection. IEEE Symposium Conference Record Nuclear Science, 2004, 4268
[43]
Destefano N, Mulato M. Influence of multi-depositions on the final properties of thermally evaporated TlBr films. Nucl Instrum Methods Phys Res A, 2010, 624, 114 doi: 10.1016/j.nima.2010.09.006
[44]
Hitomi K, Kikuchi Y, Shoji T, et al. Improvement of energy resolutions in TlBr detectors. Nucl Instrum Methods Phys Res A, 2009, 607, 112 doi: 10.1016/j.nima.2009.03.129
[45]
Brenner T M, Egger D A, Kronik L, et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat Rev Mater, 2016, 1, 15007 doi: 10.1038/natrevmats.2015.7
[46]
de Arquer F P G, Armin A, Meredith P, et al. Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater, 2017, 2, 16100 doi: 10.1038/natrevmats.2016.100
[47]
Kasap S. Low-cost X-ray detectors. Nat Photonics, 2015, 9, 420 doi: 10.1038/nphoton.2015.108
[48]
Lang F, Nickel N H, Bundesmann J, et al. Radiation hardness and self-healing of perovskite solar cells. Adv Mater, 2016, 28, 8726 doi: 10.1002/adma.201603326
[49]
Yang S, Xu Z, Xue S, et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547
[50]
Huang J, Yuan Y, Shao Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater, 2017, 2, 17042 doi: 10.1038/natrevmats.2017.42
[51]
Lang F, Shargaieva O, Brus V V, et al. Influence of radiation on the properties and the stability of hybrid perovskites. Adv Mater, 2018, 30, 1702905 doi: 10.1002/adma.201702905
[52]
Dong Q, Fang Y, Shao Y, et al. Electron–hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347, 967 doi: 10.1126/science.aaa5760
[53]
Ye F, Lin H, Wu H, et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors. Adv Funct Mater, 2019, 29, 1806984 doi: 10.1002/adfm.201806984
[54]
Saidaminov M I, Abdelhady A L, Murali B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun, 2015, 6, 1 doi: 10.1038/ncomms8586
[55]
Shrestha S, Fischer R, Matt G J, et al. High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers. Nat Photonics, 2017, 11, 436 doi: 10.1038/nphoton.2017.94
[56]
Pan W, Yang B, Niu G, et al. Hot-pressed CsPbBr3 quasi-monocrystalline film for sensitive direct X-ray detection. Adv Mater, 2019, 31, 1904405 doi: 10.1002/adma.201904405
[57]
Kasap S. X-ray sensitivity of photoconductors: application to stabilized a-Se. J Phys D, 2000, 33, 2853 doi: 10.1088/0022-3727/33/21/326
[58]
Heiss W, Brabec C. X-ray imaging: Perovskites target X-ray detection. Nat Photonics, 2016, 10, 288 doi: 10.1038/nphoton.2016.54
[59]
Wang X, Zhao D, Qiu Y, et al. PIN diodes array made of perovskite single crystal for X-ray imaging. Phys Status Solidi RRL, 2018, 12, 1800380 doi: 10.1002/pssr.201800380
[60]
Huang Y, Qiao L, Jiang Y, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew Chem Int Ed, 2019, 58, 17834 doi: 10.1002/anie.201911281
[61]
Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A, 2015, 3, 19688 doi: 10.1039/C5TA06398A
[62]
Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater, 2019, 31(30), 1901644 doi: 10.1002/adma.201901644
[63]
Yuan W, Niu G, Xian Y, et al. In situ regulating the order–disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector. Adv Funct Mater, 2019, 29, 1900234 doi: 10.1002/adfm.201900234
[64]
Zhang B, Liu X, Xiao B, et al. High performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3. J Phys Chem Lett, 2020, 11, 43 doi: 10.1021/acs.jpclett.9b03523
[65]
Wu C, Zhang Q, Liu G, et al. From Pb to Bi: a promising family of Pb-free optoelectronic materials and devices. Adv Energy Mater, 2019, 10, 1902496 doi: 10.1002/aenm.201902496
[66]
Steele J A, Pan W, Martin C, et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Adv Mater, 2018, 30, 1804450 doi: 10.1002/adma.201804450
[67]
Xu Z, Liu X, Li Y, et al. Exploring lead-free hybrid double perovskite crystals of (BA)2CsAgBiBr7 with large mobility-lifetime product toward X-ray detection. Angew Chem Int Ed, 2019, 58, 15757 doi: 10.1002/anie.201909815
[68]
Yin L, Wu H, Pan W, et al. Controlled cooling for synthesis of Cs2AgBiBr6 single crystals and its application for X-ray detection. Adv Opt Mater, 2019, 7, 1900491 doi: 10.1002/adom.201900491
[69]
Yao L, Niu G, Yin L, et al. Bismuth halide perovskite derivatives for direct X-ray detection. J Mater Chem C, 2020, 8, 1239 doi: 10.1039/C9TC06313G
[70]
Tao K, Li Y, Ji C, et al. A lead-free hybrid iodide with quantitative response to X-ray radiation. Chem Mater, 2019, 31, 5927 doi: 10.1021/acs.chemmater.9b02263
[71]
Rikner G, Grusell E. Effects of radiation damage on p-type silicon detectors. Phys Med Biol, 1983, 28, 1261 doi: 10.1088/0031-9155/28/11/006
[72]
Bellazzini R, Spandre G, Brez A, et al. Chromatic X-ray imaging with a fine pitch CdTe sensor coupled to a large area photon counting pixel ASIC. J Instrum, 2013, 8, C02028 doi: 10.1088/1748-0221/8/02/C02028
[73]
Ivanov Y M, Kanevsky V, Dvoryankin V, et al. The possibilities of using semi-insulating CdTe crystals as detecting material for X-ray imaging radiography. Phys Status Solidi C, 2003, 0(3), 840 doi: 10.1002/pssc.200306258
[74]
Zheng X, Zhao W, Wang P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites. J Energy Chem, 2020, 49, 299 doi: 10.1016/j.jechem.2020.02.049
[75]
Büchele P, Richter M, Tedde S F, et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat Photonics, 2015, 9, 843 doi: 10.1038/nphoton.2015.216
[76]
Samei E, Flynn M J, Reimann D A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med Phys, 1998, 25, 102 doi: 10.1118/1.598165
[77]
Hoheisel M, Batz L, Mertelmeier T, et al. Modulation transfer function of a selenium-based digital mammography system. IEEE Trans Nucl Sci, 2006, 53, 1118 doi: 10.1109/TNS.2006.874953
[78]
Kabir M Z, Kasap S. Modulation transfer function of photoconductive X-ray image detectors: effects of charge carrier trapping. J Phys D, 2003, 36, 2352 doi: 10.1088/0022-3727/36/19/006
[79]
Hunter D M, Belev G, Kasap S, et al. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD X-ray detector. Med Phys, 2012, 39, 608 doi: 10.1118/1.3673957
[80]
Kozorezov A G, Wigmore J, Owens A, et al. The effect of carrier diffusion on the characteristics of semiconductor imaging arrays. Nucl Instrum Methods Phys Res A, 2004, 531, 52 doi: 10.1016/j.nima.2004.05.073
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5784 Times PDF downloads: 378 Times Cited by: 0 Times

    History

    Received: 19 March 2020 Revised: 27 April 2020 Online: Accepted Manuscript: 06 May 2020Uncorrected proof: 06 May 2020Published: 13 May 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yirong Su, Wenbo Ma, Yang (Michael) Yang. Perovskite semiconductors for direct X-ray detection and imaging[J]. Journal of Semiconductors, 2020, 41(5): 051204. doi: 10.1088/1674-4926/41/5/051204 Y R Su, W B Ma, Y Yang, Perovskite semiconductors for direct X-ray detection and imaging[J]. J. Semicond., 2020, 41(5): 051204. doi: 10.1088/1674-4926/41/5/051204.Export: BibTex EndNote
      Citation:
      Yirong Su, Wenbo Ma, Yang (Michael) Yang. Perovskite semiconductors for direct X-ray detection and imaging[J]. Journal of Semiconductors, 2020, 41(5): 051204. doi: 10.1088/1674-4926/41/5/051204

      Y R Su, W B Ma, Y Yang, Perovskite semiconductors for direct X-ray detection and imaging[J]. J. Semicond., 2020, 41(5): 051204. doi: 10.1088/1674-4926/41/5/051204.
      Export: BibTex EndNote

      Perovskite semiconductors for direct X-ray detection and imaging

      doi: 10.1088/1674-4926/41/5/051204
      More Information
      • Author Bio:

        Yirong Su ‡ These authors contributed equally to this work

        Wenbo Ma ‡ Those authors contribute equally to this work

      • Corresponding author: yangyang15@zju.edu.cn
      • Received Date: 2020-03-19
      • Revised Date: 2020-04-27
      • Published Date: 2020-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return