ARTICLES

High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure

Chang Li1, 2, Cheng Chen2, 3, Jie Chen2, 3, Tao He4, Hongwei Li2, 5, Zeyuan Yang1, 2, Liu Xie2, Zhongchang Wang6 and Kai Zhang2,

+ Author Affiliations

 Corresponding author: K Zhang, kzhang2015@sinano.ac.cn

PDF

Turn off MathJax

Abstract: Black phosphorous (BP), an excellent two-dimensional (2D) monoelemental layered p-type semiconductor material with high carrier mobility and thickness-dependent tunable direct bandgap structure, has been widely applied in various devices. As the essential building blocks for modern electronic and optoelectronic devices, high quality PN junctions based on semiconductors have attracted widespread attention. Herein, we report a junction field-effect transistor (JFET) by integrating narrow-gap p-type BP and ultra-wide gap n-type β-Ga2O3 nanoflakes for the first time. BP and β-Ga2O3 form a vertical van der Waals (vdW) heterostructure by mechanically exfoliated method. The BP/β-Ga2O3 vdW heterostructure exhibits remarkable PN diode rectifying characteristics with a high rectifying ratio about 107 and a low reverse current around pA. More interestingly, by using the BP as the gate and β-Ga2O3 as the channel, the BP/β-Ga2O3 JFET devices demonstrate excellent n-channel JFET characteristics with the on/off ratio as high as 107, gate leakage current around as low as pA, maximum transconductance (gm) up to 25.3 µS and saturation drain current (IDSS) of 16.5 µA/µm. Moreover, it has a pinch-off voltage of –20 V and a minimum subthreshold swing of 260 mV/dec. These excellent n-channel JFET characteristics will expand the application of BP in future nanoelectronic devices.

Key words: two-dimensional semiconductorblack phosphorousβ-gallium oxidevdWs heterostructurejunction field-effect transistor



[1]
Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559
[2]
Pearton S J, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[3]
Zhou H, Zhang J C, Zhang C F, et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40, 011803 doi: 10.1088/1674-4926/40/1/011803
[4]
Dong H, Xue H W, He Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 2019, 40, 011802 doi: 10.1088/1674-4926/40/1/011802
[5]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[6]
Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104, 203111 doi: 10.1063/1.4879800
[7]
Ahn S, Ren F, Kim J, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016, 109, 062102 doi: 10.1063/1.4960651
[8]
Kim J, Mastro M A, Tadjer M J, et al. Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl Mater Interfaces, 2018, 10, 29724 doi: 10.1021/acsami.8b07030
[9]
Guo J, Wang L Y, Yu Y W, et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv Mater, 2019, 31, 1902962 doi: 10.1002/adma.201902962
[10]
Hajnal Z, Miró J, Kiss G, et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 1999, 86, 3792 doi: 10.1063/1.371289
[11]
Barman S K, Huda M N. Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface. Phys Status Solidi RRL, 2019, 13, 1800554 doi: 10.1002/pssr.201800554
[12]
Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[13]
Yan X D, Esqueda I S, Ma J H, et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl Phys Lett, 2018, 112, 032101 doi: 10.1063/1.5002138
[14]
Kim J, Kim J H. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications. ACS Appl Mater Interfaces, 2020, 12, 7310 doi: 10.1021/acsami.9b19667
[15]
Kim J, Mastro M A, Tadjer M J, et al. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl Mater Interfaces, 2017, 9, 21322 doi: 10.1021/acsami.7b04374
[16]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[17]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033 doi: 10.1021/nn501226z
[18]
Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5, 4458 doi: 10.1038/ncomms5458
[19]
Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001
[20]
Xu Y J, Shi Z, Shi X Y, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale, 2019, 11, 14491 doi: 10.1039/C9NR04348A
[21]
Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[22]
Deng B C, Tran V, Xie Y J, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat Commun, 2017, 8, 14474 doi: 10.1038/ncomms14474
[23]
Xu Y J, Shi X Y, Zhang Y S, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11, 1330 doi: 10.1038/s41467-020-14902-z
[24]
Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 2015, 9, 247 doi: 10.1038/nphoton.2015.23
[25]
Chen X L, Lu X B, Deng B C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 2017, 8, 1672 doi: 10.1038/s41467-017-01978-3
[26]
Zhu W K, Wei X, Yan F G, et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicond, 2019, 40, 092001 doi: 10.1088/1674-4926/40/9/092001
[27]
Batmunkh M, Bat-Erdene M, Shapter J G. Black phosphorus: Synthesis and application for solar cells. Adv Energy Mater, 2018, 8, 1701832 doi: 10.1002/aenm.201701832
[28]
Yang Y, Gao J, Zhang Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater, 2016, 28, 8937 doi: 10.1002/adma.201602382
[29]
Muduli S K, Varrla E, Kulkarni S A, et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. J Power Sources, 2017, 371, 156 doi: 10.1016/j.jpowsour.2017.10.018
[30]
Ricciardulli A G, Blom P W M. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv Mater Technol, 2020, 1900972 doi: 10.1002/admt.201900972
[31]
Ge X X, Xia Z H, Guo S J. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater, 2019, 29, 1900318 doi: 10.1002/adfm.201900318
[32]
Wu G, Wu X J, Xu Y J, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 2019, 31, 1806492 doi: 10.1002/adma.201806492
[33]
Tao W, Kong N, Ji X Y, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev, 2019, 48, 2891 doi: 10.1039/C8CS00823J
[34]
Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA, 2018, 115, 501 doi: 10.1073/pnas.1714421115
[35]
Xu Y J, Yuan J, Zhang K, et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 2017, 27, 1702211 doi: 10.1002/adfm.201702211
[36]
Lv W, Fu X, Luo X, et al. Multistate logic inverter based on black phosphorus/SnSeS heterostructure. Adv Electron Mater, 2019, 5, 1800416 doi: 10.1002/aelm.201800416
[37]
Jeon P J, Lee Y T, Lim J Y, et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p–n diode and junction field-effect transistor. Nano Lett, 2016, 16, 1293 doi: 10.1021/acs.nanolett.5b04664
[38]
Lim J Y, Kim M, Jeong Y, et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater Appl, 2018, 2, 37 doi: 10.1038/s41699-018-0082-2
[39]
Wang J H, Liu D N, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew Chem Int Ed, 2018, 57, 2600 doi: 10.1002/anie.201710859
[40]
Zheng Y, Yu Z H, Ou H H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 2018, 28, 1705407 doi: 10.1002/adfm.201705407
[41]
He Q Y, Liu Y, Tan C L, et al. Quest for p-type two-dimensional semiconductors. ACS Nano, 2019, 13, 12294 doi: 10.1021/acsnano.9b07618
[42]
Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8, 8292 doi: 10.1021/nn5027388
[43]
Lv Q, Yan F G, Mori N, et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 2020, 30, 1910713 doi: 10.1002/adfm.201910713
Fig. 1.  (Color online) (a) Optical microscope images of fabrication steps of BP/β-Ga2O3 heterojunction device. The channel length and width of the β-Ga2O3 were 16 and 6 μm, respectively. (b) SEM image of an as-fabricated BP/β-Ga2O3 heterojunction device. (c) Schematic illustration of the JFET device fabricated on a Si/SiO2 (285 nm) substrate. (d) Energy band diagram of multilayer p-type BP and n-type β-Ga2O3 heterojunctions with a vdW gap. Scale bars are 10 µm.

Fig. 2.  (Color online) (a) AFM image of the BP/β-Ga2O3 heterojunction. (b, c) Height profiles of the exfoliated BP and β-Ga2O3 flakes in (a). The thicknesses of the nanoflakes are 32.6 and 123.5 nm, respectively. (d) Raman spectra of the BP, β-Ga2O3 and the BP/β-Ga2O3 overlapped regions obtained under a 532 nm laser. The black and green curve demonstrated typical multilayer BP flake and β-Ga2O3 flake. The red curve shows the peaks of the overlapped region. (e) SEM image of the BP/β-Ga2O3 heterostructure device (left) and corresponding EDS element mappings for Ga and P (right). Scale bars are 5 µm.

Fig. 3.  (Color online) (a)Transfer characteristics for back-gate BP FET. Back gate voltage Vbg swept from –60 to 60 V with a fixed source–drain bias voltage Vds = 0.1 V. (Inset: output characteristics for back gated BP FET. Vbg ranging from –60 to 60 V with steps of 30 V under Vds swept from 0 to 50 mV.) (b) Transfer characteristics for back gate β-Ga2O3 FET. Vbg swept from –80 to 80 V with a fixed Vds = 5 V (Inset: output characteristics for back-gate β-Ga2O3 FET. Vbg ranging from –80 to 80 V with steps of 40 V under Vds swept from 0 to 5 V.) (c) IdsVds curve of BP/β-Ga2O3 PN heterojunction. It shows a typical rectifying behavior. (Inset: the circuit schematic diagram of the PN heterojunction.) (d) IdsVds semi-log plot of the BP/β-Ga2O3 PN heterojunction.

Fig. 4.  (Color online) (a) Circuit schematic diagram and optical image of the BP/β-Ga2O3 JFET. (b) Band diagram of β-Ga2O3 along the channel length direction. The red and blue curve shows the band bending at zero and negative gate voltage, respectively. (c) Output characteristics (IdsVds) of the JFET. Vgs ranging from –15 to 2 V under Vds swept from 0 to 25 V. (d) Transfer characteristics (IdsVgs) of the JFET. Vds ranging from 2 to 20 V under Vgs swept from –25 to 2 V. (e) Semi-log plot of the transfer characteristics of the JFET. It shows a high on/off ratio beyond 107. (f) Transconductance curves (estimated from transfer curves of (d)) of BP/β-Ga2O3 JFET as function of Vgs with Vds sweeping from 2 to 20 V.

Fig. 5.  (Color online) (a) Output characteristics curves of the BP/β-Ga2O3 JFET under different temperatures (ranging from 300 to 450 K with steps of 50 K) at Vgs = 1 V. (b) Transfer characteristics curves of the BP/β-Ga2O3 JFET under different temperatures (ranging from 300 to 450 K with steps of 50 K) at Vds = 10 V.

[1]
Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 2000, 77, 4166 doi: 10.1063/1.1330559
[2]
Pearton S J, Yang J C, Cary P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[3]
Zhou H, Zhang J C, Zhang C F, et al. A review of the most recent progresses of state-of-art gallium oxide power devices. J Semicond, 2019, 40, 011803 doi: 10.1088/1674-4926/40/1/011803
[4]
Dong H, Xue H W, He Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material. J Semicond, 2019, 40, 011802 doi: 10.1088/1674-4926/40/1/011802
[5]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[6]
Hwang W S, Verma A, Peelaers H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl Phys Lett, 2014, 104, 203111 doi: 10.1063/1.4879800
[7]
Ahn S, Ren F, Kim J, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl Phys Lett, 2016, 109, 062102 doi: 10.1063/1.4960651
[8]
Kim J, Mastro M A, Tadjer M J, et al. Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl Mater Interfaces, 2018, 10, 29724 doi: 10.1021/acsami.8b07030
[9]
Guo J, Wang L Y, Yu Y W, et al. SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope. Adv Mater, 2019, 31, 1902962 doi: 10.1002/adma.201902962
[10]
Hajnal Z, Miró J, Kiss G, et al. Role of oxygen vacancy defect states in then-type conduction of β-Ga2O3. J Appl Phys, 1999, 86, 3792 doi: 10.1063/1.371289
[11]
Barman S K, Huda M N. Mechanism behind the easy exfoliation of Ga2O3 ultra-thin film along (100) surface. Phys Status Solidi RRL, 2019, 13, 1800554 doi: 10.1002/pssr.201800554
[12]
Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567, 323 doi: 10.1038/s41586-019-1013-x
[13]
Yan X D, Esqueda I S, Ma J H, et al. High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure. Appl Phys Lett, 2018, 112, 032101 doi: 10.1063/1.5002138
[14]
Kim J, Kim J H. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications. ACS Appl Mater Interfaces, 2020, 12, 7310 doi: 10.1021/acsami.9b19667
[15]
Kim J, Mastro M A, Tadjer M J, et al. Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl Mater Interfaces, 2017, 9, 21322 doi: 10.1021/acsami.7b04374
[16]
Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9, 372 doi: 10.1038/nnano.2014.35
[17]
Liu H, Neal A T, Zhu Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8, 4033 doi: 10.1021/nn501226z
[18]
Xia F N, Wang H, Jia Y C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun, 2014, 5, 4458 doi: 10.1038/ncomms5458
[19]
Zhou Z Q, Cui Y, Tan P H, et al. Optical and electrical properties of two-dimensional anisotropic materials. J Semicond, 2019, 40, 061001 doi: 10.1088/1674-4926/40/6/061001
[20]
Xu Y J, Shi Z, Shi X Y, et al. Recent progress in black phosphorus and black-phosphorus-analogue materials: Properties, synthesis and applications. Nanoscale, 2019, 11, 14491 doi: 10.1039/C9NR04348A
[21]
Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun, 2014, 5, 4475 doi: 10.1038/ncomms5475
[22]
Deng B C, Tran V, Xie Y J, et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat Commun, 2017, 8, 14474 doi: 10.1038/ncomms14474
[23]
Xu Y J, Shi X Y, Zhang Y S, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat Commun, 2020, 11, 1330 doi: 10.1038/s41467-020-14902-z
[24]
Youngblood N, Chen C, Koester S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat Photonics, 2015, 9, 247 doi: 10.1038/nphoton.2015.23
[25]
Chen X L, Lu X B, Deng B C, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat Commun, 2017, 8, 1672 doi: 10.1038/s41467-017-01978-3
[26]
Zhu W K, Wei X, Yan F G, et al. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J Semicond, 2019, 40, 092001 doi: 10.1088/1674-4926/40/9/092001
[27]
Batmunkh M, Bat-Erdene M, Shapter J G. Black phosphorus: Synthesis and application for solar cells. Adv Energy Mater, 2018, 8, 1701832 doi: 10.1002/aenm.201701832
[28]
Yang Y, Gao J, Zhang Z, et al. Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater, 2016, 28, 8937 doi: 10.1002/adma.201602382
[29]
Muduli S K, Varrla E, Kulkarni S A, et al. 2D black phosphorous nanosheets as a hole transporting material in perovskite solar cells. J Power Sources, 2017, 371, 156 doi: 10.1016/j.jpowsour.2017.10.018
[30]
Ricciardulli A G, Blom P W M. Solution-processable 2D materials applied in light-emitting diodes and solar cells. Adv Mater Technol, 2020, 1900972 doi: 10.1002/admt.201900972
[31]
Ge X X, Xia Z H, Guo S J. Recent advances on black phosphorus for biomedicine and biosensing. Adv Funct Mater, 2019, 29, 1900318 doi: 10.1002/adfm.201900318
[32]
Wu G, Wu X J, Xu Y J, et al. High-performance hierarchical black-phosphorous-based soft electrochemical actuators in bioinspired applications. Adv Mater, 2019, 31, 1806492 doi: 10.1002/adma.201806492
[33]
Tao W, Kong N, Ji X Y, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev, 2019, 48, 2891 doi: 10.1039/C8CS00823J
[34]
Qiu M, Wang D, Liang W Y, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc Natl Acad Sci USA, 2018, 115, 501 doi: 10.1073/pnas.1714421115
[35]
Xu Y J, Yuan J, Zhang K, et al. Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv Funct Mater, 2017, 27, 1702211 doi: 10.1002/adfm.201702211
[36]
Lv W, Fu X, Luo X, et al. Multistate logic inverter based on black phosphorus/SnSeS heterostructure. Adv Electron Mater, 2019, 5, 1800416 doi: 10.1002/aelm.201800416
[37]
Jeon P J, Lee Y T, Lim J Y, et al. Black phosphorus-zinc oxide nanomaterial heterojunction for p–n diode and junction field-effect transistor. Nano Lett, 2016, 16, 1293 doi: 10.1021/acs.nanolett.5b04664
[38]
Lim J Y, Kim M, Jeong Y, et al. Van der Waals junction field effect transistors with both n- and p-channel transition metal dichalcogenides. npj 2D Mater Appl, 2018, 2, 37 doi: 10.1038/s41699-018-0082-2
[39]
Wang J H, Liu D N, Huang H, et al. In-plane black phosphorus/dicobalt phosphide heterostructure for efficient electrocatalysis. Angew Chem Int Ed, 2018, 57, 2600 doi: 10.1002/anie.201710859
[40]
Zheng Y, Yu Z H, Ou H H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation. Adv Funct Mater, 2018, 28, 1705407 doi: 10.1002/adfm.201705407
[41]
He Q Y, Liu Y, Tan C L, et al. Quest for p-type two-dimensional semiconductors. ACS Nano, 2019, 13, 12294 doi: 10.1021/acsnano.9b07618
[42]
Deng Y X, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 2014, 8, 8292 doi: 10.1021/nn5027388
[43]
Lv Q, Yan F G, Mori N, et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater, 2020, 30, 1910713 doi: 10.1002/adfm.201910713
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3725 Times PDF downloads: 133 Times Cited by: 0 Times

    History

    Received: 29 May 2020 Revised: 16 June 2020 Online: Accepted Manuscript: 28 June 2020Uncorrected proof: 01 July 2020Published: 04 August 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002 C Li, C Chen, J Chen, T He, H W Li, Z Y Yang, L Xie, Z C Wang, K Zhang, High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. J. Semicond., 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002.Export: BibTex EndNote
      Citation:
      Chang Li, Cheng Chen, Jie Chen, Tao He, Hongwei Li, Zeyuan Yang, Liu Xie, Zhongchang Wang, Kai Zhang. High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. Journal of Semiconductors, 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002

      C Li, C Chen, J Chen, T He, H W Li, Z Y Yang, L Xie, Z C Wang, K Zhang, High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure[J]. J. Semicond., 2020, 41(8): 082002. doi: 10.1088/1674-4926/41/8/082002.
      Export: BibTex EndNote

      High-performance junction field-effect transistor based on black phosphorus/β-Ga2O3 heterostructure

      doi: 10.1088/1674-4926/41/8/082002
      More Information
      • Corresponding author: K Zhang, kzhang2015@sinano.ac.cn
      • Received Date: 2020-05-29
      • Revised Date: 2020-06-16
      • Published Date: 2020-08-09

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return