SEMICONDUCTOR DEVICES

Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode

Swagata Dey1, , Vedatrayee Chakraborty2, Bratati Mukhopadhyay1 and Gopa Sen1

+ Author Affiliations

 Corresponding author: Swagata Dey, swagatadey2009@gmail.com

PDF

Turn off MathJax

Abstract: The double barrier quantum well (DBQW) resonant tunneling diode (RTD) structure made of SiGeSn/GeC/SiGeSn alloys grown on Ge substrate is analyzed. The tensile strained Ge1−zCz on Si1−xyGexSny heterostructure provides a direct band gap type I configuration. The transmission coefficient and tunneling current density have been calculated considering single and multiple quantum wells. A comparative study of tunnelling current of the proposed structure is done with the existing RTD structure based on GeSn/SiGeSn DBH. A higher value of the current density for the proposed structure has been obtained.

Key words: DBQWMQWRTDNDRtunneling current density



[1]
Deen M J, Basu P K. Silicon photonics: fundamentals and Devices. Chichester U K John Wiley, 2012.
[2]
Pavesi L, Lockwood D J. Silicon photonics. New York: Springer, 2004
[3]
Bauer M , Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81: 2992 doi: 10.1063/1.1515133
[4]
Lee J W, Reed M A. Molecular beam epitaxial growth of AlGaAs/InGaAs resonant tunneling structures. J Vac Sci Technol B, 1987, 5(3): 771 doi: 10.1116/1.583745
[5]
Ghosh S, Basu P K. The calculated composition of Ge1−zCz/Ge1−xzSixSny heterostructure grown on Si for direct gap emission from Ge1−zCz at 1.55 μm. Solid State Commun, 2010, 150: 844 doi: 10.1016/j.ssc.2010.02.017
[6]
Menendez J, Kouvetakis J. Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap. Appl Phys Lett, 2004, 85: 1175 doi: 10.1063/1.1784032
[7]
Chakraborty V, Mukhopadhyay B. Group IV heterojunction laser structure based on S–Ge–Sn–C around 1550 nm: determination of gain coefficient. Proceedings in International Conference in Computers andDevices for Communication, 2015
[8]
Sun G, Soref R A, Cheng H H. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double heterostructure mid infra red laser. J Appl Phys, 2010, 108: 033107 doi: 10.1063/1.3467766
[9]
Chang S W, Chuang S L. Theory of optical gain of Ge-SixGeySn1−xy quantum-well lasers. IEEE J Quantum Electron, 2007, 43(3): 249 doi: 10.1109/JQE.2006.890401
[10]
Zhu Y H, Xu Q, Fan W J, et al. Theoretical gain of strained GeSn/Ge1−xySixSny quantum well laser. J Appl Phys, 2010, 107: 073108 doi: 10.1063/1.3329424
[11]
Chang G E, Chang S W, Chuang S L. Strain-balanced GezSn1−z–SixGeySn1−xy multiple quantum-well lasers. IEEE J Quantum Electron, 2010, 46(12): 1813 doi: 10.1109/JQE.2010.2059000
[12]
Basu R, Chakraborty V, Mukhopadhyay B, et al. Predicted performance of Ge/GeSn hetero-photo transistors on Si substrate at 1.55 μm. Opt Quant Electron, 2013, 47(2): 387
[13]
Moontragoon P, Vukmirovi'C N, Ikoni'C Z, et al. SnGe asymmetric quantum well electro absorption modulators for long-wave silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16(1): 100 doi: 10.1109/JSTQE.2009.2026691
[14]
Dey S, Mukhopadhyay B, Basu P K. Modeling of responsivity of GeSn/SiGeSn QWIP. Proceedings in International Conference in Computers andDevices for Communication, 2015
[15]
Esaki L, Tsu R. Superlattics and negative differential conductivity in semiconductors. IBM J Res Develop, 1970, 14: 61 doi: 10.1147/rd.141.0061
[16]
Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett, 1973, 22: 562 doi: 10.1063/1.1654509
[17]
Chang L L, Esaki L, Tsu R. Resonant tunnelling in semiconductor double barriers. Appl Phys Lett, 1974, 24: 593 doi: 10.1063/1.1655067
[18]
Wu K Y, Tsai B H, Chen J Z, et al. Sn-based group-IV structure for resonant tunneling diodes. IEEE Electron Device Lett, 2013, 34(8): 951 doi: 10.1109/LED.2013.2266540
[19]
Mukherjee K, Das N R. Tunneling current calculations for nonuniform and asymmetric multiple quantum well structures. J Appl Phys, 2011, 109: 053708 doi: 10.1063/1.3553391
[20]
Handbook of mathematical functions. Edited by Abramowitz M A and Stegun I A. Dover, New York, 1965
Fig. 1.  Schematic structure of MQW RTD with carriers’ movement.

Fig. 2.  Transmission coefficient variation with energy for single quantum well.

Fig. 3.  Tunneling current density variation with bias voltage for single quantum well.

Fig. 4.  Tunneling current density variation with energy of the uniform MQW structure.

Fig. 5.  Tunnelling current density variation with bias voltage for multiple quantum well.

Table 1.   Parameters used for calculation.

Parameter Si Ge C Sn
a (Å) 5.4307 5.6573 3.567 6.4892
Edir (eV) 3.3021 0.804 6.5 −0.4102
Eind (eV) 2.1021 0.7013 9.2 0.1202
Δ0 (eV) 0.044 0.3 0 0.8
C11 (Pa) 16.67 12.853 107.9 6.9
C12 (Pa) 6.93 4.826 2.93
b = b1 + 2b2 (eV) −2.2 −2.86 −4.67
av (eV) 2.46 1.24 −13.9 1.58
ac (eV) −10.06 −8.24 −16.8 −6.00
\setlength{\voffset}{0pt}${\Xi _{\text{d}}}{\text{ + }}\frac{{{\Xi _{\text{u}}}}}{3} $ (eV) 1.5 −2.34
DownLoad: CSV
[1]
Deen M J, Basu P K. Silicon photonics: fundamentals and Devices. Chichester U K John Wiley, 2012.
[2]
Pavesi L, Lockwood D J. Silicon photonics. New York: Springer, 2004
[3]
Bauer M , Taraci J, Tolle J, et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett, 2002, 81: 2992 doi: 10.1063/1.1515133
[4]
Lee J W, Reed M A. Molecular beam epitaxial growth of AlGaAs/InGaAs resonant tunneling structures. J Vac Sci Technol B, 1987, 5(3): 771 doi: 10.1116/1.583745
[5]
Ghosh S, Basu P K. The calculated composition of Ge1−zCz/Ge1−xzSixSny heterostructure grown on Si for direct gap emission from Ge1−zCz at 1.55 μm. Solid State Commun, 2010, 150: 844 doi: 10.1016/j.ssc.2010.02.017
[6]
Menendez J, Kouvetakis J. Type-I Ge/GeSiSn strained layer heterostructures with a direct Ge band gap. Appl Phys Lett, 2004, 85: 1175 doi: 10.1063/1.1784032
[7]
Chakraborty V, Mukhopadhyay B. Group IV heterojunction laser structure based on S–Ge–Sn–C around 1550 nm: determination of gain coefficient. Proceedings in International Conference in Computers andDevices for Communication, 2015
[8]
Sun G, Soref R A, Cheng H H. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double heterostructure mid infra red laser. J Appl Phys, 2010, 108: 033107 doi: 10.1063/1.3467766
[9]
Chang S W, Chuang S L. Theory of optical gain of Ge-SixGeySn1−xy quantum-well lasers. IEEE J Quantum Electron, 2007, 43(3): 249 doi: 10.1109/JQE.2006.890401
[10]
Zhu Y H, Xu Q, Fan W J, et al. Theoretical gain of strained GeSn/Ge1−xySixSny quantum well laser. J Appl Phys, 2010, 107: 073108 doi: 10.1063/1.3329424
[11]
Chang G E, Chang S W, Chuang S L. Strain-balanced GezSn1−z–SixGeySn1−xy multiple quantum-well lasers. IEEE J Quantum Electron, 2010, 46(12): 1813 doi: 10.1109/JQE.2010.2059000
[12]
Basu R, Chakraborty V, Mukhopadhyay B, et al. Predicted performance of Ge/GeSn hetero-photo transistors on Si substrate at 1.55 μm. Opt Quant Electron, 2013, 47(2): 387
[13]
Moontragoon P, Vukmirovi'C N, Ikoni'C Z, et al. SnGe asymmetric quantum well electro absorption modulators for long-wave silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16(1): 100 doi: 10.1109/JSTQE.2009.2026691
[14]
Dey S, Mukhopadhyay B, Basu P K. Modeling of responsivity of GeSn/SiGeSn QWIP. Proceedings in International Conference in Computers andDevices for Communication, 2015
[15]
Esaki L, Tsu R. Superlattics and negative differential conductivity in semiconductors. IBM J Res Develop, 1970, 14: 61 doi: 10.1147/rd.141.0061
[16]
Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett, 1973, 22: 562 doi: 10.1063/1.1654509
[17]
Chang L L, Esaki L, Tsu R. Resonant tunnelling in semiconductor double barriers. Appl Phys Lett, 1974, 24: 593 doi: 10.1063/1.1655067
[18]
Wu K Y, Tsai B H, Chen J Z, et al. Sn-based group-IV structure for resonant tunneling diodes. IEEE Electron Device Lett, 2013, 34(8): 951 doi: 10.1109/LED.2013.2266540
[19]
Mukherjee K, Das N R. Tunneling current calculations for nonuniform and asymmetric multiple quantum well structures. J Appl Phys, 2011, 109: 053708 doi: 10.1063/1.3553391
[20]
Handbook of mathematical functions. Edited by Abramowitz M A and Stegun I A. Dover, New York, 1965
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4278 Times PDF downloads: 87 Times Cited by: 0 Times

    History

    Received: 06 February 2018 Revised: 07 March 2018 Online: Accepted Manuscript: 23 April 2018Uncorrected proof: 25 April 2018Published: 09 October 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Swagata Dey, Vedatrayee Chakraborty, Bratati Mukhopadhyay, Gopa Sen. Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode[J]. Journal of Semiconductors, 2018, 39(10): 104003. doi: 10.1088/1674-4926/39/10/104003 S Dey, V Chakraborty, B Mukhopadhyay, G Sen, Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode[J]. J. Semicond., 2018, 39(10): 104003. doi: 10.1088/1674-4926/39/10/104003.Export: BibTex EndNote
      Citation:
      Swagata Dey, Vedatrayee Chakraborty, Bratati Mukhopadhyay, Gopa Sen. Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode[J]. Journal of Semiconductors, 2018, 39(10): 104003. doi: 10.1088/1674-4926/39/10/104003

      S Dey, V Chakraborty, B Mukhopadhyay, G Sen, Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode[J]. J. Semicond., 2018, 39(10): 104003. doi: 10.1088/1674-4926/39/10/104003.
      Export: BibTex EndNote

      Modeling of tunneling current density of GeC based double barrier multiple quantum well resonant tunneling diode

      doi: 10.1088/1674-4926/39/10/104003
      More Information
      • Corresponding author: swagatadey2009@gmail.com
      • Received Date: 2018-02-06
      • Revised Date: 2018-03-07
      • Published Date: 2018-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return