SEMICONDUCTOR MATERIALS

Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells

Xinliang Chen1, 2, 3, , Congbo Yan1, 2, 3, Xinhua Geng1, 2, 3, Dekun Zhang1, 2, 3, Changchun Wei1, 2, 3, Ying Zhao1, 2, 3 and Xiaodan Zhang1, 2, 3

+ Author Affiliations

 Corresponding author: Chen Xinliang, Email: cxlruzhou@163.com

PDF

Abstract: Modified textured surface boron-doped ZnO (ZnO:B) transparent conductive layers for thin-film solar cells were fabricated by low-pressure metal organic chemical vapor deposition (LP-MOCVD) on glass substrates. These modified textured surface ZnO:B thin films included two layers. The first ZnO:B layer, which has a pyramid-shaped texture, was deposited under conventional growth conditions, and the second layer, which has a sphere-like structure, at a relatively lower growth temperature. Typical bi-layer ZnO:B thin films exhibit a high electron mobility of 27.6 cm2/(V· s) due to improved grain boundary states. For bi-layer ZnO:B, the haze value increases and the total transmittance decreases with the increasing film thickness of the second modification layer. When applied in hydrogenated microcrystalline silicon (μc-Si:H) thin-film solar cells, the modified textured surface ZnO:B layers present relatively higher conversion efficiency than conventional ZnO:B films.

Key words: zinc oxide thin filmstransparent conductive oxidesMOCVDtextured surfacethin-film solar cells



[1]
Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Prog Photovolt:Res and Appl, 2004, 12:113 doi: 10.1002/(ISSN)1099-159X
[2]
Hoffmann W, Pellkofer T. Thin films in photovoltaics:technologies and perspectives. Thin Solid Films, 2012, 520:4094 doi: 10.1016/j.tsf.2011.04.146
[3]
Hsu C M, Battaglia C, Pahud C, et al. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector. Adv Energy Mater, 2012, 2:628 doi: 10.1002/aenm.201100514
[4]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Sol Energy, 2004, 77:917 doi: 10.1016/j.solener.2004.03.015
[5]
Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell. Appl Phys Lett, 2011, 99:113512 doi: 10.1063/1.3638068
[6]
Janthong B, Hongsingthong A, Krajangsang T, et al. Novel a-Si:H/μc-Si:H tandem cell with lower optical loss. J Non-Cryst Solids. 2012, 358:2478 doi: 10.1016/j.jnoncrysol.2012.01.060
[7]
Ruske F, Jacobs C, Sittinger V, et al. Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications. Thin Solid Films, 2007, 515:8695 doi: 10.1016/j.tsf.2007.03.107
[8]
Ding L, Boccard M, Bugnon G, et al. Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells. Sol Energy Mater Sol Cells, 2012, 98:331 doi: 10.1016/j.solmat.2011.11.033
[9]
Bugnon G, Parascandolo G, Söderström T, et al. A new view of microcrystalline silicon:the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Adv Funct Mater, 2012, 22:3665 doi: 10.1002/adfm.v22.17
[10]
Hongsingthong A, Krajangsang T, Fujioka H, et al. Improvement of short-circuit current in silicon-based thin film solar cells using ZnO films with very high haze value. 26th European Photovoltaic Solar Energy Conference and Exhibition, DOI:10.4229/26thEUPVSEC2011-3AV.2.9
[11]
Kluth O, Rech B, Houben L, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999, 351:247 doi: 10.1016/S0040-6090(99)00085-1
[12]
Hongsingthong A, Yunaz I A, Miyajima S, et al. Preparation of ZnO thin films using MOCVD technique with D2O/H2O gas mixture for use as TCO in silicon-based thin film solar cells. Sol Energy MaterSol Cells, 2011, 95:171 doi: 10.1016/j.solmat.2010.04.025
[13]
Chen X L, Li L N, Wang F, et al. Natively textured surface aluminum-doped zinc oxide transparent conductive layers for thin film solar cells via pulsed direct-current reactive magnetron sputtering. Thin Solid Films, 2012, 520:5392 doi: 10.1016/j.tsf.2012.03.120
[14]
Owen J I, Zhang W, Köhl D, et al. Study on the in-line sputtering growth and structural properties of polycrystalline ZnO:Al on ZnO and glass. J Cryst Growth, 2012, 344:12 doi: 10.1016/j.jcrysgro.2012.01.043
[15]
Hüpkes J, Owen J I, Pust S E, et al. Chemical etching of zinc oxide for thin-film silicon solar cells. Chem Phys Phys Chem, 2012, 13:66 doi: 10.1002/cphc.201100738
[16]
Chen X L, Geng X H, Xue J M, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J Cryst Growth, 2006, 296:43 doi: 10.1016/j.jcrysgro.2006.08.028
[17]
Python M, Vallat-Sauvain E, Bailat J, et al. Relation between substrate surface morphology and microcrystalline silicon solar cell performance. J Non-Cryst Solids, 2008, 354:2258 doi: 10.1016/j.jnoncrysol.2007.09.084
[18]
Moriya Y, Krajangsang T, Sichanugrist P, et al. Development of high-efficiency tandem silicon solar cells on W-textured zinc oxide-coated soda-lime glass substrates. Photovoltaic Specialists Conference (PVSC), DOI:10.1109/PVSC.2012.6318219.
[19]
Chen X L, Xue J M, Sun J, et al. Growth of textured ZnO thin films and their front electrodes for application in solar cells. Chin J Semicond, 2007, 28:1072 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200707013.htm
[20]
Jiang X, Jia C L, Szyszka B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Appl Phys Lett, 2002, 80:3090 doi: 10.1063/1.1473683
[21]
Yan C B, Chen X L, Wang F, et al. Textured surface ZnO:B/(hydrogenated gallium-doped ZnO) and (hydrogenated gallium-doped ZnO)/ZnO:B transparent conductive oxide layers for Si-based thin film solar cells. Thin Solid Films, 2012, 521:249 doi: 10.1016/j.tsf.2011.10.203
[22]
Shah A. Thin-film silicon solar cells. Swiss EPFL Press, 2010
Fig. 1.  Typical SEM images of MOCVD-ZnO:B thin films. (a) A smooth surface ZnO:B at $T$ $=$ 298 K and $t$ $=$ 30 min. (b) A rough textured surface ZnO:B at $T$ $=$ 423 K and $t$ $=$ 30 min. (c)-(e) A bi-layer structure, i.e. a conventional rough textured surface ZnO:B covered with a 5, 10 and 15 min thickness modification layer, respectively.

Fig. 2.  The typical optical transmittances and haze curves of the MOCVD-ZnO:B thin films. $a$: A smooth surface ZnO:B at $T$ $=$ 298 K and $t$ $=$ 30 min. $b$: A rough textured surface ZnO:B at $T$ $=$ 423 K and $t$ $=$ 30 min. $c$-$e$: A bi-layer structure, i.e. a conventional rough textured surface ZnO:B covered with a 5, 10 and 15 min thickness modification layer, respectively.

Fig. 3.  Current-voltage curves of $\mu $c-Si:H thin-film solar cells on conventional textured surface ZnO:B and bi-layer ZnO:B.

Fig. 4.  The quantum efficiency of $\mu $c-Si:H thin-film solar cells on conventional textured surface ZnO:B and bi-layer ZnO:B.

Table 1.   The electrical properties of the MOCVD-ZnO:B thin films.

[1]
Shah A V, Schade H, Vanecek M, et al. Thin-film silicon solar cell technology. Prog Photovolt:Res and Appl, 2004, 12:113 doi: 10.1002/(ISSN)1099-159X
[2]
Hoffmann W, Pellkofer T. Thin films in photovoltaics:technologies and perspectives. Thin Solid Films, 2012, 520:4094 doi: 10.1016/j.tsf.2011.04.146
[3]
Hsu C M, Battaglia C, Pahud C, et al. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector. Adv Energy Mater, 2012, 2:628 doi: 10.1002/aenm.201100514
[4]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Sol Energy, 2004, 77:917 doi: 10.1016/j.solener.2004.03.015
[5]
Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a > 16% efficient multi-junction thin-film silicon solar cell. Appl Phys Lett, 2011, 99:113512 doi: 10.1063/1.3638068
[6]
Janthong B, Hongsingthong A, Krajangsang T, et al. Novel a-Si:H/μc-Si:H tandem cell with lower optical loss. J Non-Cryst Solids. 2012, 358:2478 doi: 10.1016/j.jnoncrysol.2012.01.060
[7]
Ruske F, Jacobs C, Sittinger V, et al. Large area ZnO:Al films with tailored light scattering properties for photovoltaic applications. Thin Solid Films, 2007, 515:8695 doi: 10.1016/j.tsf.2007.03.107
[8]
Ding L, Boccard M, Bugnon G, et al. Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells. Sol Energy Mater Sol Cells, 2012, 98:331 doi: 10.1016/j.solmat.2011.11.033
[9]
Bugnon G, Parascandolo G, Söderström T, et al. A new view of microcrystalline silicon:the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Adv Funct Mater, 2012, 22:3665 doi: 10.1002/adfm.v22.17
[10]
Hongsingthong A, Krajangsang T, Fujioka H, et al. Improvement of short-circuit current in silicon-based thin film solar cells using ZnO films with very high haze value. 26th European Photovoltaic Solar Energy Conference and Exhibition, DOI:10.4229/26thEUPVSEC2011-3AV.2.9
[11]
Kluth O, Rech B, Houben L, et al. Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films, 1999, 351:247 doi: 10.1016/S0040-6090(99)00085-1
[12]
Hongsingthong A, Yunaz I A, Miyajima S, et al. Preparation of ZnO thin films using MOCVD technique with D2O/H2O gas mixture for use as TCO in silicon-based thin film solar cells. Sol Energy MaterSol Cells, 2011, 95:171 doi: 10.1016/j.solmat.2010.04.025
[13]
Chen X L, Li L N, Wang F, et al. Natively textured surface aluminum-doped zinc oxide transparent conductive layers for thin film solar cells via pulsed direct-current reactive magnetron sputtering. Thin Solid Films, 2012, 520:5392 doi: 10.1016/j.tsf.2012.03.120
[14]
Owen J I, Zhang W, Köhl D, et al. Study on the in-line sputtering growth and structural properties of polycrystalline ZnO:Al on ZnO and glass. J Cryst Growth, 2012, 344:12 doi: 10.1016/j.jcrysgro.2012.01.043
[15]
Hüpkes J, Owen J I, Pust S E, et al. Chemical etching of zinc oxide for thin-film silicon solar cells. Chem Phys Phys Chem, 2012, 13:66 doi: 10.1002/cphc.201100738
[16]
Chen X L, Geng X H, Xue J M, et al. Temperature-dependent growth of zinc oxide thin films grown by metal organic chemical vapor deposition. J Cryst Growth, 2006, 296:43 doi: 10.1016/j.jcrysgro.2006.08.028
[17]
Python M, Vallat-Sauvain E, Bailat J, et al. Relation between substrate surface morphology and microcrystalline silicon solar cell performance. J Non-Cryst Solids, 2008, 354:2258 doi: 10.1016/j.jnoncrysol.2007.09.084
[18]
Moriya Y, Krajangsang T, Sichanugrist P, et al. Development of high-efficiency tandem silicon solar cells on W-textured zinc oxide-coated soda-lime glass substrates. Photovoltaic Specialists Conference (PVSC), DOI:10.1109/PVSC.2012.6318219.
[19]
Chen X L, Xue J M, Sun J, et al. Growth of textured ZnO thin films and their front electrodes for application in solar cells. Chin J Semicond, 2007, 28:1072 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200707013.htm
[20]
Jiang X, Jia C L, Szyszka B. Manufacture of specific structure of aluminum-doped zinc oxide films by patterning the substrate surface. Appl Phys Lett, 2002, 80:3090 doi: 10.1063/1.1473683
[21]
Yan C B, Chen X L, Wang F, et al. Textured surface ZnO:B/(hydrogenated gallium-doped ZnO) and (hydrogenated gallium-doped ZnO)/ZnO:B transparent conductive oxide layers for Si-based thin film solar cells. Thin Solid Films, 2012, 521:249 doi: 10.1016/j.tsf.2011.10.203
[22]
Shah A. Thin-film silicon solar cells. Swiss EPFL Press, 2010
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2322 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 21 September 2013 Revised: 20 November 2013 Online: Published: 01 April 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xinliang Chen, Congbo Yan, Xinhua Geng, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells[J]. Journal of Semiconductors, 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002 X L Chen, C B Yan, X H Geng, D K Zhang, C C Wei, Y Zhao, X D Zhang. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells[J]. J. Semicond., 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002.Export: BibTex EndNote
      Citation:
      Xinliang Chen, Congbo Yan, Xinhua Geng, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells[J]. Journal of Semiconductors, 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002

      X L Chen, C B Yan, X H Geng, D K Zhang, C C Wei, Y Zhao, X D Zhang. Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells[J]. J. Semicond., 2014, 35(4): 043002. doi: 10.1088/1674-4926/35/4/043002.
      Export: BibTex EndNote

      Modified textured surface MOCVD-ZnO:B transparent conductive layers for thin-film solar cells

      doi: 10.1088/1674-4926/35/4/043002
      Funds:

      the Fundamental Research Funds for the Central Universities, China 65010341

      the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan, China 13JCZDJC26900

      the State Key Development Program for Basic Research of China 2011CBA00705

      the State Key Development Program for Basic Research of China 2011CBA00707

      the Tianjin Major Science and Technology Support Project, China 11TXSYGX22100

      Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan, China (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project, China (No. 11TXSYGX22100), and the Fundamental Research Funds for the Central Universities, China (No. 65010341)

      the State Key Development Program for Basic Research of China 2011CBA00706

      More Information
      • Corresponding author: Chen Xinliang, Email: cxlruzhou@163.com
      • Received Date: 2013-09-21
      • Revised Date: 2013-11-20
      • Published Date: 2014-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return