SEMICONDUCTOR MATERIALS

Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics

Tingting Chen1, 2, Bing Liu1, 2, Xiujian Chou1, 2, , Jun Liu1, 2, Chenyang Xue1, 2 and Wendong Zhang1, 2

+ Author Affiliations

 Corresponding author: Chou Xiujian, Email:chouxiujian@nuc.edu.cn

PDF

Abstract: Pb0.97La0.02(Zr0.75Sn0.25-xTix)O3 (x=0.10, 0.105, 0.11) (PLZST) antiferroelectric ceramics with highly preferred-(110) orientation were successfully fabricated via the conventional solid-state reaction method. The antiferroelectric nature of PLZST ceramics induced by electric field was demonstrated by the dielectric constant-temperature (D-T) and the polarization-electric field (P-E) measurement. Typical phase transition from ferroelectric (FE) to antiferroelectric (AFE), and then to paraelectric (PE) is obtained. The results indicate that the phase transition behavior is suppressed with increasing of x, and Tc is remarkably shifted to higher temperature of 168℃, 170℃ and 174℃, respectively. Besides, high phase transition current (1×10-6 A, 8×10-7 A and 6×10-7 A, respectively) is obtained with temperature induced. Consequently, the excellent electric properties and the restraint between temperature and electric field would provide basis on the application of PLZST antiferroelectric ceramics in microelectronic integrated systems and sophisticated weapons systems.

Key words: PLZST antiferroelectric ceramicselectrical propertieshigh sensitivity of temperature



[1]
Tang Z F, Tang X G. Structural, dielectric and optical properties of highly oriented lead zirconate thin films prepared by sol-gel process. Mater Chem Phys, 2003, 80(1):294 doi: 10.1016/S0254-0584(02)00514-X
[2]
Zhai J W, Li X, Chen H. Effect of the orientation on the ferroelectric-antiferroelectric behavior of sol-gel deposited (Pb, Nb)(Zr, Sn, Ti)O3 thin films. Thin Solid Films, 2004, 446(2):200 doi: 10.1016/j.tsf.2003.09.067
[3]
Haertling G H. Ferroelectric ceramics:history and technology. Journal of the American Ceramic Society, 1999, 82(4):797 doi: 10.1111/j.1151-2916.1999.tb01840.x
[4]
Berlincourt D, Kruefer H H A, Jaffe B. Stability of phase in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids, 1964, 25(7):659 doi: 10.1016/0022-3697(64)90175-1
[5]
Berlincourt D. Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling. Journal of the Acoustical Society of America, 1964, 36(3):515 doi: 10.1121/1.1918990
[6]
Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. London:Academic Press, 1971
[7]
Berlincourt D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans Sonics and Ultrasonics, 1966, 13(4):116 doi: 10.1109/T-SU.1966.29394
[8]
Pan W Y, Dam C Q, Zhang Q M, et al. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti, Zr, Sn)O3 family of ceramics. J Appl Phys, 1989, 66(12):6013
[9]
Wang Chunli. Appliance research of antiferroelectrics. Piezoelectrics & Acoustooptics, 1994, 16(2):46
[10]
Li G, Furman E, Haertling G H. Fabrication and properties of PZST antiferroelectric rainbow actuators. Ferroelectrics, 1996, 188(1):233 doi: 10.1080/00150199608244892?queryID=%24{resultBean.queryID}
[11]
Haertling G H. Rainbow ceramics:a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1):93 http://cat.inist.fr/?aModele=afficheN&cpsidt=3907030
[12]
Xu Z K, Zhai J W, Chan W H, et al. Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl Phys Lett, 2006, 88:132908 doi: 10.1063/1.2191413
[13]
Yang T Q, Liu P, Xu Z, et al. Tunable pyroelectricity in La-modified PZST antiferroelectric ceramics. Ferroelectrics, 1999, 230:181 doi: 10.1080/00150199908214916
[14]
Feng Y J, Xu Z, Yang T Q, et al. Pyroelectric spectrum in Pb(Zr, Sn, Ti)O3 antiferroelectric-ferroelectric ceramics. Chinese Science Bulletin, 2000, 45(13):1169 doi: 10.1007/BF02886071
[15]
Liu Gaomin, Tan Hua, Yuan Wanzong, et al. Ferroelectric/antiferroelectric phase transition studies of PZT-95/5 ceramics under shock loading. Chinese Journal of High Pressure Physics, 2002, 16(3):231 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYWL200203012.htm
[16]
Dai Zhonghua, Yao Xi, Xu Zhuo, et al. Phase transition and dielectric properties of PbLa(Zr, Sn, Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Journal of Electroceramics, 2008, 21(1-4):597 doi: 10.1007/s10832-007-9251-y
Fig. 1.  XRD patterns of PLZST ceramics with different compositions.

Fig. 2.  FESEM of PLZST ceramics with Sn/Ti ratio of (a) 15/10, (b) 14.5/10.5, and (c) 14/11.

Fig. 3.  Dielectric thermograms of PLZST antiferroelectric ceramics with different compositions (a) before polarization and (b) after polarization.

Fig. 4.  (Color online) Hysteresis loops of PLZST ceramics with Sn/Ti ratio of (a) 15/10, (b) 14.5/10.5, (c) 14/11.

Fig. 5.  Phase transition current for PLZST ceramics with different compositions.

[1]
Tang Z F, Tang X G. Structural, dielectric and optical properties of highly oriented lead zirconate thin films prepared by sol-gel process. Mater Chem Phys, 2003, 80(1):294 doi: 10.1016/S0254-0584(02)00514-X
[2]
Zhai J W, Li X, Chen H. Effect of the orientation on the ferroelectric-antiferroelectric behavior of sol-gel deposited (Pb, Nb)(Zr, Sn, Ti)O3 thin films. Thin Solid Films, 2004, 446(2):200 doi: 10.1016/j.tsf.2003.09.067
[3]
Haertling G H. Ferroelectric ceramics:history and technology. Journal of the American Ceramic Society, 1999, 82(4):797 doi: 10.1111/j.1151-2916.1999.tb01840.x
[4]
Berlincourt D, Kruefer H H A, Jaffe B. Stability of phase in modified lead zirconate with variation in pressure, electric field, temperature and composition. J Phys Chem Solids, 1964, 25(7):659 doi: 10.1016/0022-3697(64)90175-1
[5]
Berlincourt D. Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling. Journal of the Acoustical Society of America, 1964, 36(3):515 doi: 10.1121/1.1918990
[6]
Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics. London:Academic Press, 1971
[7]
Berlincourt D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans Sonics and Ultrasonics, 1966, 13(4):116 doi: 10.1109/T-SU.1966.29394
[8]
Pan W Y, Dam C Q, Zhang Q M, et al. Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti, Zr, Sn)O3 family of ceramics. J Appl Phys, 1989, 66(12):6013
[9]
Wang Chunli. Appliance research of antiferroelectrics. Piezoelectrics & Acoustooptics, 1994, 16(2):46
[10]
Li G, Furman E, Haertling G H. Fabrication and properties of PZST antiferroelectric rainbow actuators. Ferroelectrics, 1996, 188(1):233 doi: 10.1080/00150199608244892?queryID=%24{resultBean.queryID}
[11]
Haertling G H. Rainbow ceramics:a new type of ultra-high-displacement actuator. American Ceramic Society Bulletin, 1994, 73(1):93 http://cat.inist.fr/?aModele=afficheN&cpsidt=3907030
[12]
Xu Z K, Zhai J W, Chan W H, et al. Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl Phys Lett, 2006, 88:132908 doi: 10.1063/1.2191413
[13]
Yang T Q, Liu P, Xu Z, et al. Tunable pyroelectricity in La-modified PZST antiferroelectric ceramics. Ferroelectrics, 1999, 230:181 doi: 10.1080/00150199908214916
[14]
Feng Y J, Xu Z, Yang T Q, et al. Pyroelectric spectrum in Pb(Zr, Sn, Ti)O3 antiferroelectric-ferroelectric ceramics. Chinese Science Bulletin, 2000, 45(13):1169 doi: 10.1007/BF02886071
[15]
Liu Gaomin, Tan Hua, Yuan Wanzong, et al. Ferroelectric/antiferroelectric phase transition studies of PZT-95/5 ceramics under shock loading. Chinese Journal of High Pressure Physics, 2002, 16(3):231 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYWL200203012.htm
[16]
Dai Zhonghua, Yao Xi, Xu Zhuo, et al. Phase transition and dielectric properties of PbLa(Zr, Sn, Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Journal of Electroceramics, 2008, 21(1-4):597 doi: 10.1007/s10832-007-9251-y
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2369 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 13 September 2013 Revised: 21 November 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. Journal of Semiconductors, 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002 T T Chen, B Liu, X J Chou, J Liu, C Y Xue, W D Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002.Export: BibTex EndNote
      Citation:
      Tingting Chen, Bing Liu, Xiujian Chou, Jun Liu, Chenyang Xue, Wendong Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. Journal of Semiconductors, 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002

      T T Chen, B Liu, X J Chou, J Liu, C Y Xue, W D Zhang. Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics[J]. J. Semicond., 2014, 35(3): 033002. doi: 10.1088/1674-4926/35/3/033002.
      Export: BibTex EndNote

      Effect of temperature on phase transition behavior of antiferroelectric (Pb0.97La0.02)(Zr0.75Sn0.25-xTix)O3 ceramics

      doi: 10.1088/1674-4926/35/3/033002
      Funds:

      the Program for New Century Excellent Talents in University [2012]80

      the Functional Materials Research Laboratory, Tongji University, China 

      the National Science Fund for Distinguished Young Scholars 51225504

      Project supported by the National Natural Science Foundation of China (No. 51175483), the National Science Fund for Distinguished Young Scholars (No. 51225504), the Program for New Century Excellent Talents in University (No.[2012]80), and the Functional Materials Research Laboratory, Tongji University, China

      the National Natural Science Foundation of China 51175483

      More Information
      • Corresponding author: Chou Xiujian, Email:chouxiujian@nuc.edu.cn
      • Received Date: 2013-09-13
      • Revised Date: 2013-11-21
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return