SEMICONDUCTOR MATERIALS

Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide

Gui Yang1, 2, , Yufeng Zhang1 and Xunwang Yan1

+ Author Affiliations

 Corresponding author: Yang Gui, Email:kuiziyang@126.com

PDF

Abstract: The electronic and optical properties of graphene monoxide, a new type of semiconductor material, are theoretically studied by first-principles density functional theory. The calculated band structure shows that graphene monoxide is a semiconductor with a direct band gap of 0.95 eV. The density of states of graphene monoxide and the partial density of states for C and O are given to understand the electronic structure. In addition, we calculate the optical properties of graphene monoxide, including the complex dielectric function, absorption coefficient, complex refractive index, loss-function, reflectivity and conductivity. These results provide a physical basis for potential application in optoelectronic devices.

Key words: graphene monoxideelectronic band structureoptical property



[1]
Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature (London), 2005, 438:197 doi: 10.1038/nature04233
[2]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666 doi: 10.1126/science.1102896
[3]
Zhang Y B, Tan Y W, Stormer H L, et al. Hall effect and Berry's phase in grapheme. Nature, 2005, 438:201 doi: 10.1038/nature04235
[4]
Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets. Nature, 2007, 446:60 doi: 10.1038/nature05545
[5]
Oostinga J B, Heersche H B, Liu X L, et al. Gate-induced insulating state in bilayer graphene devices. Nature Mater, 2007, 7:151 https://arxiv.org/pdf/0707.2487
[6]
Rycerz A. Random matrices and quantum chaos in weakly disordered graphene nanoflakes. Phys Rev B, 2012, 85:245424 doi: 10.1103/PhysRevB.85.245424
[7]
Rasanen E, Rozzi C A, Pittalis S, et al. Electron-electron interactions in artificial graphene. Phys Rev Lett, 2012, 108:246803 doi: 10.1103/PhysRevLett.108.246803
[8]
Huang B L, Chang M C, Mou C Y. Persistent currents in a graphene ring with armchair edges. J Phys:Condens Matter, 2012, 24:245304 doi: 10.1088/0953-8984/24/24/245304
[9]
Hung N V, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D:Appl Phys, 2012, 45:325104 doi: 10.1088/0022-3727/45/32/325104
[10]
Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene:semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 2007, 99:216802 doi: 10.1103/PhysRevLett.99.216802
[11]
Zhang Y, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer grapheme. Nature (London), 2009, 459:820 doi: 10.1038/nature08105
[12]
Yang L, Park C H, Son Y W, et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett, 2007, 99:186801 doi: 10.1103/PhysRevLett.99.186801
[13]
Han M Y, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98:206805 doi: 10.1103/PhysRevLett.98.206805
[14]
Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319:5867, 1229 http://www.doc88.com/p-745821994305.html
[15]
Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100:206803 doi: 10.1103/PhysRevLett.100.206803
[16]
Biel B, Blase X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett, 2009, 102:096803 doi: 10.1103/PhysRevLett.102.096803
[17]
Yu S, Zheng W, Wang C, et al. Nitrogen/boron doping position dependence of the electronic properties of a triangular grapheme. ACS Nano, 2010, 4:7619 doi: 10.1021/nn102369r
[18]
Li Y, Zhou Z, Shen P, et al. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3:1952 doi: 10.1021/nn9003428
[19]
Lherbier A, Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D grapheme. Phys Rev Lett, 2008, 101:036808 doi: 10.1103/PhysRevLett.101.036808
[20]
Deng D H, Pan X L, Yu L, et al. Toward N-doped graphene via solvothermal synthesis. Chem Mater, 2011, 23(5):1188 doi: 10.1021/cm102666r
[21]
Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc, 2012, 134(1):15 doi: 10.1021/ja206030c
[22]
Joucken F, Tison Y, Lagoute J, et al. Localized state and charge transfer in nitrogen-doped grapheme. Phys Rev B, 2012, 85:161408(R) doi: 10.1103/PhysRevB.85.161408
[23]
Xiang H J, Huang B, Li Z Y, et al. Ordered semiconducting nitrogen-graphene alloys. Phys Rev X, 2012, 2:011003 http://adsabs.harvard.edu/abs/2012PhRvX...2a1003X
[24]
Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett, 2009, 9(3):1058 doi: 10.1021/nl8034256
[25]
Parka S J, Sukb J W, Anb J, et al. The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon, 2012, 50(12):4573 doi: 10.1016/j.carbon.2012.05.042
[26]
Lu G H, Park S, Yu K H, et al. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano, 2011, 5:1154 doi: 10.1021/nn102803q
[27]
Mattson E C, Pu H H, Cui S M, et al. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum. ACS Nano, 2011, 5(12):9710 doi: 10.1021/nn203160n
[28]
Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of grapheme. Rev Mod Phys, 2009, 81:109 doi: 10.1103/RevModPhys.81.109
[29]
Shen X C. Semiconductor optical properties. Science Press, 1992
Fig. 1.  (a) The 3 $\times$ 3 graphene supercell with the calculated structural parameters. (b) The band structure for graphene when the band gap is zero.

Fig. 2.  (a) The proposed GMO geometric structure and band structure. The carbon and oxygen atoms are grey and black. (a1) Perspective view of the 3 $\times$ 3 graphene monoxide supercell, and the top and side view for C–O. (a2) Top view of GMO and the detailed structural parameters. (b) The GGA calculated band structure for GMO when the band gap is 0.952 eV.

Fig. 3.  The total density of states of GMO and the partial density of states for C and O.

Fig. 4.  (a) The dielectric function and (b) absorption coefficient of GMO.

Fig. 5.  The optical functions of GMO. (a) Complex refractive index. (b) Loss function. (c) Reflective. (d) Conductivity

Table 1.   Population analysis results of graphene and GMO.

[1]
Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in grapheme. Nature (London), 2005, 438:197 doi: 10.1038/nature04233
[2]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666 doi: 10.1126/science.1102896
[3]
Zhang Y B, Tan Y W, Stormer H L, et al. Hall effect and Berry's phase in grapheme. Nature, 2005, 438:201 doi: 10.1038/nature04235
[4]
Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets. Nature, 2007, 446:60 doi: 10.1038/nature05545
[5]
Oostinga J B, Heersche H B, Liu X L, et al. Gate-induced insulating state in bilayer graphene devices. Nature Mater, 2007, 7:151 https://arxiv.org/pdf/0707.2487
[6]
Rycerz A. Random matrices and quantum chaos in weakly disordered graphene nanoflakes. Phys Rev B, 2012, 85:245424 doi: 10.1103/PhysRevB.85.245424
[7]
Rasanen E, Rozzi C A, Pittalis S, et al. Electron-electron interactions in artificial graphene. Phys Rev Lett, 2012, 108:246803 doi: 10.1103/PhysRevLett.108.246803
[8]
Huang B L, Chang M C, Mou C Y. Persistent currents in a graphene ring with armchair edges. J Phys:Condens Matter, 2012, 24:245304 doi: 10.1088/0953-8984/24/24/245304
[9]
Hung N V, Mazzamuto F, Bournel A, et al. Resonant tunnelling diodes based on graphene/h-BN heterostructure. J Phys D:Appl Phys, 2012, 45:325104 doi: 10.1088/0022-3727/45/32/325104
[10]
Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene:semiconductor with a gap tunable by the electric field effect. Phys Rev Lett, 2007, 99:216802 doi: 10.1103/PhysRevLett.99.216802
[11]
Zhang Y, Tang T T, Girit C, et al. Direct observation of a widely tunable bandgap in bilayer grapheme. Nature (London), 2009, 459:820 doi: 10.1038/nature08105
[12]
Yang L, Park C H, Son Y W, et al. Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett, 2007, 99:186801 doi: 10.1103/PhysRevLett.99.186801
[13]
Han M Y, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98:206805 doi: 10.1103/PhysRevLett.98.206805
[14]
Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319:5867, 1229 http://www.doc88.com/p-745821994305.html
[15]
Wang X R, Ouyang Y J, Li X L, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100:206803 doi: 10.1103/PhysRevLett.100.206803
[16]
Biel B, Blase X, Triozon F, et al. Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett, 2009, 102:096803 doi: 10.1103/PhysRevLett.102.096803
[17]
Yu S, Zheng W, Wang C, et al. Nitrogen/boron doping position dependence of the electronic properties of a triangular grapheme. ACS Nano, 2010, 4:7619 doi: 10.1021/nn102369r
[18]
Li Y, Zhou Z, Shen P, et al. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3:1952 doi: 10.1021/nn9003428
[19]
Lherbier A, Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D grapheme. Phys Rev Lett, 2008, 101:036808 doi: 10.1103/PhysRevLett.101.036808
[20]
Deng D H, Pan X L, Yu L, et al. Toward N-doped graphene via solvothermal synthesis. Chem Mater, 2011, 23(5):1188 doi: 10.1021/cm102666r
[21]
Li Y, Zhao Y, Cheng H H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc, 2012, 134(1):15 doi: 10.1021/ja206030c
[22]
Joucken F, Tison Y, Lagoute J, et al. Localized state and charge transfer in nitrogen-doped grapheme. Phys Rev B, 2012, 85:161408(R) doi: 10.1103/PhysRevB.85.161408
[23]
Xiang H J, Huang B, Li Z Y, et al. Ordered semiconducting nitrogen-graphene alloys. Phys Rev X, 2012, 2:011003 http://adsabs.harvard.edu/abs/2012PhRvX...2a1003X
[24]
Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic and electronic structure of graphene-oxide. Nano Lett, 2009, 9(3):1058 doi: 10.1021/nl8034256
[25]
Parka S J, Sukb J W, Anb J, et al. The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon, 2012, 50(12):4573 doi: 10.1016/j.carbon.2012.05.042
[26]
Lu G H, Park S, Yu K H, et al. Toward practical gas sensing with highly reduced graphene oxide:a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano, 2011, 5:1154 doi: 10.1021/nn102803q
[27]
Mattson E C, Pu H H, Cui S M, et al. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum. ACS Nano, 2011, 5(12):9710 doi: 10.1021/nn203160n
[28]
Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of grapheme. Rev Mod Phys, 2009, 81:109 doi: 10.1103/RevModPhys.81.109
[29]
Shen X C. Semiconductor optical properties. Science Press, 1992
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2221 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 27 January 2013 Revised: 06 March 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Gui Yang, Yufeng Zhang, Xunwang Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide[J]. Journal of Semiconductors, 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004 G Yang, Y F Zhang, X W Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide[J]. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004.Export: BibTex EndNote
      Citation:
      Gui Yang, Yufeng Zhang, Xunwang Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide[J]. Journal of Semiconductors, 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004

      G Yang, Y F Zhang, X W Yan. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide[J]. J. Semicond., 2013, 34(8): 083004. doi: 10.1088/1674-4926/34/8/083004.
      Export: BibTex EndNote

      Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide

      doi: 10.1088/1674-4926/34/8/083004
      Funds:

      the National Natural Science Foundation of China . 11005003

      the National Natural Science Foundation of China . 11147197

      the Education Department of Henan Province, China 2011B140002

      the Research Project of Basic and Cutting-Edge Technology of Henan Province, China 112300410183

      Project supported by the National Natural Science Foundation of China (Nos. 11047108, 11147197, 11005003), the Research Project of Basic and Cutting-Edge Technology of Henan Province, China (No. 112300410183), and the Education Department of Henan Province, China (No. 2011B140002)

      the National Natural Science Foundation of China . 11047108

      More Information
      • Corresponding author: Yang Gui, Email:kuiziyang@126.com
      • Received Date: 2013-01-27
      • Revised Date: 2013-03-06
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return